Numerical studies of some partial orderings on a set with height at most one

  • Mohammed Aljohani
  • Sami Lazaar
  • Abdelwaheb Mhemdi
  • Neama Zidani
  • Ahmed Aboubakr Aboubakr

Abstract

Recently, some researchers have introduced several novel classes of partially ordered sets (posets) with a height of at most 1. They studied some of their properties and relationships to Alexandrov topologies. This paper extends their work by enumerating some of these poset classes and illustrating their connections to various established discrete structures through digraph representations.

Downloads

Download data is not yet available.

References

P. Alexandroff, Diskrete Raume, Mat. Sb. 44 (2), 501-519, (1937).

P. Alexandroff, Combinatorial Topology, Dover, New York, 2011.

P. Alexandroff and H. Hopf, Topologie, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1935.

M. G. Alshehri, S. Lazaar, A. Mhemdi and N. Zidani, Some separation axioms for partially ordered sets, Filomat 37 (7), 2173-2182, (2023).

T. M. Al-shami, Sum of the spaces on ordered setting, Moroc. J. Pure Appl. Anal. 6 (2), 255-265, (2020).

C. E. Aull and W. J. Thron, Separation axioms between T0 and T1, Indag. Math. 23, 507-516, (1961).

E. Bouacida, O. Echi and E. Salhi, Topologies associee a une relation binaire et relation binaire speciale, Boll. Unione Mat. Ital. 7 (10-B), 417-439, (1996).

I. Dahane, S. Lazaar, T. Richmond and T. Turki, On resolvable primal spaces, Quaestiones Math. 1, 1-21, (2018).

L. Dridi, S. Lazaar and T. Turki, F-door spaces and F-submaximal spaces, Appl. Gen. Topol. 1, 97-113, (2013).

K. Dourari, A. M. Abd El-latif, S. Lazaar, A. Mhemdi and T. M. Al-shami, Quasihomeomorphisms and some topological properties, Mathematics 11 (23), 4748, (2023).

O. Echi, The categories of flows of Set and Top, Topology Appl. 159 (9), 2357-2366, (2012).

O. Echi, On the product of primal spaces, Quaestiones Math. 40 (1), 17-28, (2020).

F. A. Z. Shirazi and N. Golestani, Functional Alexandroff spaces, Hacet. J. Math. Stat. 40 (4), 515-522, (2011).

A. Gutierrez, Collatz conjecture revisited: an elementary generalization, Acta Univ. Sapientiae Math. 12 (1), 112-127, (2020).

A. Guale, F. Mejia and J. Vielma, Paths in primal spaces and the Collatz conjecture, Quaestiones Math. 43 (5), 615-629, (2020).

A. Haouati and S. Lazaar, Primal spaces and quasihomeomorphisms, Appl. Gen. Topol. 16 (2), 109-118, (2015).

E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (2), 309-333, (1943).

D. Klarner, The number of graded partially ordered sets, J. Combin. Theory Ser. A 6 (1), 12-19, (1969).

J. L. Kelly, General Topology, Van Nostrand, New York, 1955.

S. Lazaar, H. Sabri and R. Tahri, On some topological properties in the class of Alexandroff spaces, Turkish J. Math. 45 (4), 1678-1692, (2021).

S. Lazaar, T. Richmond and H. Sabri, Homogeneous functionally Alexandroff spaces, Bull. Austral. Math. Soc. 96 (2), 299-307, (2017).

S. Lazaar and H. Sabri, The topological group of autohomeomorphisms of homogeneous functionally Alexandroff spaces, Topology Proc. 55, 243-264, (2020).

S. Lazaar, T. Richmond and T. Turki, Maps generating the same primal space, Quaestiones Math. 40 (1), 17-28, (2020).

S. Lazaar, A. Mhemdi, T. Al-shami and H. Okbani, On T1-reflection of topological spaces, Hacet. J. Math. Stat. 52 (2), 398-409, (2023).

A. Mhemdi, S. Lazaar and K. Dourari, On some properties of Whyburn spaces, Comput. Intell. Neurosci. 2022, Art. ID 1234567, 10 pp., (2022).

A. Mhemdi and T. M. Al-shami, Functionally separation axioms on general topology, J. Math. 2021, Art. ID 5590047, 5 pp., (2021).

A. Mhemdi and T. M. Al-Shami, Introduction to temporal topology, J. Math. Comput. Sci. 34 (3), 205-216, (2024).

A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cah. Topol. Geom. Differ. Categ. 34 (3), 167-183, (1993).

B. Schr¨oder, Ordered Sets: An Introduction with Connections from Combinatorics to Topology, 2nd edn., Birkhauser, Boston, 2016.

P. Simon, On accumulation points, Cah. Topol. Geom. Differ. Categ. 35 (4), 321-327, (1994).

N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation, (2023), http://oeis.org/.

M. H. Stone, Applications of Boolean algebras to topology, Mat. Sb. 1 (43), 765-771, (1936).

P. Urysohn, Uber die Machtigkeit der zusammenhangenden Mengen, Math. Ann. 94, 262-295, (1925).

J. W. T. Youngs, A note on separation axioms and their application in the theory of a locally connected topological space, Bull. Amer. Math. Soc. 49, 383-385, (1943).

Published
2025-07-13
Section
Research Articles