Analysis of fractional order mathematical model of HIV-TB using Atangana-Baleanu-Caputo operator in the presence of treatment for TB
Abstract
This study presents a mathematical investigation of the transmission dynamics of HIV - Tuberculosis (TB) co-infection using the Atangana-Baleanu-Caputo (ABC) fractional operator with MittagLeffler kernel, representing a significant advancement over conventional integer-order models by capturing the memory-dependent nature of disease progression that traditional approaches cannot adequately represent. The model’s mathematical rigor was established through existence and uniqueness analysis using the PicardLindelöf theorem, ensuring solution reliability. Comprehensive sensitivity and uncertainty analyses, with the basic reproduction number as the response function, identified three critical parameters driving TB transmission: the TB transmission rate, modification parameters for TB-only individual infectiousness, and latent TB treatment rates. Numerical simulations demonstrated that prioritizing treatment for individuals with latent TB infections—both TB-only and HIV-TB co-infected cases—significantly reduces both TB and HIV incidence rates in the population. The fractional-order framework successfully captures nuanced co-infection dynamics that conventional models miss, while our intervention analysis reveals that targeted treatment of latent TB infections represents a highly effective strategy for controlling the dual HIV-TB epidemic, providing evidence-based guidance for integrated healthcare policies.
Downloads
References
HIV.gov. What are HIV and AIDS? 2023. Retrieved December 2, 2024, from https://www.hiv.gov
Kumar, P., Sharma, N., and Gupta, R. Challenges in combating HIV-TB coinfection: Current perspectives. Journal of Infectious Diseases, 228(3):134–146, 2023. doi: 10.1093/infdis/jiad034
Okeke, I. N., Adegbite, O., and Musa, A. Integrative approaches to HIV and TB management in sub-Saharan Africa. The Lancet Global Health, 11(5):e740–e750, 2023. doi: 10.1016/S2214-109X(23)00115-2
UNAIDS. New UNAIDS report shows AIDS pandemic can be ended by 2030. 2024. Retrieved December 2, 2024, from https://www.unaids.org
World Health Organization (WHO). Global tuberculosis report 2024. 2024. Retrieved December 2, 2024, from https://www.who.int
Bolarinwa Bolaji, Thomas Onoja, Agbata, B. C., Omede, B. I, and Odionyenma, U. B. Dynamical analysis of HIV-TB coinfection in the presence of treatment for TB. Bulletin of Biomathematics, 2(1):21–56, 2024.
Getahun, H., Gunneberg, C., Granich, R., and Nunn, P. HIV and tuberculosis—Science and implementation to turn the tide. The Lancet, 375(9731):262–265, 2010. doi: 10.1016/S0140-6736(09)61820-1
Atangana, A. and Goufo, E. F. D. On the mathematical analysis of the Ebola model with ABC fractional derivatives. Chaos, Solitons & Fractals, 114:161–171, 2018. doi: 10.1016/j.chaos.2018.07.020
Abidemi, A., Olufemi, O., and Salawu, E. O. Fractional-order dynamics of COVID-19 and hepatitis B with vaccination. Chaos, Solitons & Fractals, 154:111680, 2022. doi: 10.1016/j.chaos.2021.111680
El-Sayed, A. M., Nagwa, A. M., and Abo-Zaid, F. A fractional piecewise derivative model for Rubella dynamics using Caputo and Atangana-Baleanu derivatives. Journal of Computational and Applied Mathematics, 412:113574, 2023. doi: 10.1016/j.cam.2023.113574
Mahmood, H., Khan, N., and Ahmad, S. Modeling tuberculosis dynamics using Caputo fractional derivatives and the homotopy perturbation method. Bulletin of the National Research Centre, 47(1):58, 2023. doi: 10.1186/s42269-023-00872-1
Atangana, A. and Goufo, E. F. D. Network-based fractional-order epidemic models with impulsive control strategies. Chaos, Solitons & Fractals, 172:113888, 2023. doi: 10.1016/j.chaos.2023.113888
Agbata, B. C., Shior, M. M., Obeng-Denteh, W., Omotehinwa, T. O., Paul, R. V., Kwabi, P. A., and Asante-Mensa, F. A mathematical model of COVID-19 transmission dynamics with effects of awareness and vaccination program. Journal of Global Scientific Academy, 21(2):59–61, 2023.
Odeh, J. O., Agbata, B. C., Ezeafulukwe, A. U., Madubueze, C. E., Acheneje, G. O., and Topman, N. N. A mathematical model for the control of chlamydia disease with treatment strategy. Journal of Mathematical Analysis and Research, 7(1):1–20, 2024.
Olumuyiwa, J. P., Sumit, K., Nitu, K., Festus, A. O., Kayode, O., and Rabiu, M. Transmission dynamics of monkeypox virus: A mathematical modeling approach. Modeling Earth System and Environment, 2021. doi: 10.1007/s40808-021-013313-2
Agbata, B. C., Obeng-Denteh, W., Amoah-Mensah, J., Kwabi, P. A., Shior, M. M., Asante Mensa, F, and Abraham, S. Numerical solution of fractional order model of measles disease with double dose vaccination. DUJOPAS, 10(3b):202–217, 2024.
Acheneje, G. O., Omale, D., Agbata, B. C., Atokolo, W., Shior, M. M., and Bolawarinwa, B. Approximate solution of the fractional order Mathematical model on the transmission dynamics of the co-infection of COVID-19 and Monkeypox Using Laplace-Adomian Decomposition method. IJMSS, 12(3):17–51, 2024.
Alzahrani, A. K. and Khan, M. A. The co-dynamics of malaria and Tuberculosis with optimal control strategies. Filomat, 36(6):1789–1818, 2022. doi: 10.2298/FIL2206789A
Omeje D, Acheneje, G, Odiba, P, and Bolarinwa, B. Modelling the transmission dynamics of the coinfection of Malaria and Tuberculosis with optimal control strategies cost effectiveness analysis. Research square. Preprint, 2024. doi: 10.21203/rs.3rs-5312505/v1
Agbata, B. C., Shior, M. M., Olorunnishola, O. A., Ezugorie, I. G., and Obeng-Denteh, W. Analysis of Homotopy Perturbation Method (HPM) and its application for solving infectious disease models. IJMSS, 9(4):27–38, 2021.
Mbah, G. C. E., Onah, I. S., Ahman, Q. O., Collins, O. C., Asogwa, C. C., and Okoye, C. Mathematical modelling approach of the study of Ebola Virus Disease transmission dynamics in a developing country. African Journal of Infectious Diseases, 17(1):10–26, 2023. doi: 10.21010/Ajidv17i1.2
Ahman, Q. O., Omale, D., Asogwa, C. C., Nnaji, D. U., and Mbah, G. C. E. Transmission dynamics of Ebola Virus Disease with vaccine, condom use, quarantine, isolation, and treatment drug. African Journal of Infectious Diseases, 15(1):10–23, 2021.
Atangana, A. and Baleanu, D. New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model. Thermal Science, 20(3):763–769, 2016. doi: 10.2298/TSCI160111018A
Kirk, W. A. Some fixed point theorems and applications to the theory of nonlinear differential equations. Journal of Differential Equations, 12(4):610–623, 1972. doi: 10.1016/0022-0396(72)90034-2
Haidar, A. H., Al-Bayati, A. M., and Sulaiman, S. F. Numerical simulations for solving epidemiological models using MATLAB. Journal of Mathematical Modeling and Applications, 24(2):45–60, 2019. doi: 10.1016/j.jmma.2019.05.002
Kharab, F., Salim, H. A., and Yasin, I. S. Computational methods for epidemiological model simulation: A comparison of software tools. Applied Mathematical Modelling, 41(6):3025–3038, 2017. doi: 10.1016/j.apm.2016.10.004
Azeez, A., Ndege, J., Mutambayi, R., and Qin, Y. A mathematical model for TB/HIV co-infection in treatment and transmission mechanism. Asian J. Math. Computer Res., 22:180–192, 2017.
Nwankwo, A. and Okuonghae, D. Mathematical analysis of the treatment dynamics of HIV syphilis Co-infection in the presence of treatment for syphilis. Springer, 2017.
Omale, D., Ojih, P. B., Atokolo, W., Omale, A. J, and Bolaji, B. Mathematical model for transmission dynamics of HIV and Tuberculosis co-infection in Kogi State, Nigeria. J. Math. comput. Sci., 11:5580–5613, 2021.
Blower, S. M. and Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission. Int Stat Rev., 62(2):229–243, 1994.
Sanchez, M. A. and Blower, S. M. Uncertainty and sensitivity analysis of the basic reproductive rate. Am. J. Epidemiol., 145(12):1127–1137, 1997.
Elbasha, E. H. Model for hepatitis C virus transmission. Math Biosci, 10(4):1045–1065, 2013.
Fatmawati, W. and Tasmon, H. An optimal treatment control of TB-HIV co-infection. Int. J. Math. Math. Sci., 8261208, 2016.
Agbata, B. C., Ogala, E., Tenuche, S. B., and Obeng-Denteh, W. Mathematical modelling of COVID-19 trasmission dynamics with a case study of Nigeria and its computer simulation. CJBS, 13:1–16, 2020.
Diekman, O. and Heesterbeck, J. A. P. Mathematical epidemiology of infectious disease. John Wiley and Sons, West Sussex, England, 2000.
Naresh, R., Sharma, D., and Tripathi, A. Modelling the effect of TB and the spread of HIV infection in a population with density-dependent birth and death rate. Math. Computer Model., 50:1154–1166, 2009.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



