Limits of recurrent operators
Abstract
An operator $T$ acting on a complex, infinite-dimensional Hilbert space $\mathcal{H}$ is deemed recurrent (or super-recurrent) if, for each open subset $U \subset \mathcal{H}$, there exists an integer $n$ (alternatively, there exist $n\in \mathbb{N}$ and $\lambda\in \mathbb{C}$) such that $T^n U\cap U\neq\emptyset,$ (or $\lambda T^n U\cap U\neq\emptyset$ for the super-recurrent case). It is known that if $T$ is recurrent, then the set of eigenvalues of $T^*$, the adjoint of $T^*$, is contained in the unit circle $\mathbb{T}$ and that the union of the spectrum of $T$ and $\mathbb{T}$ is a connected set. By these results, we gave a complete spectral characterization of the norm closure of the class $REC(\mathcal{H})$, which consists of all recurrent operators acting on $\mathcal{H}$. Furthermore, analogous results are obtained for the closely related class $SREC(\mathcal{H})$, the set of all super-recurrent operators on $\mathcal{H}$.
Downloads
References
C. Apostol, B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. 26, 427-442, (1977).
M. Amouch, A. Bachir, O. Benchiheb, S. Mecheri, Weakly recurrent operators, Mediterr. J. Math. 20, 169, (2023).
M. Amouch, O. Benchiheb, Diskcyclicity of sets of operators and applications, Acta Math. Sin. Engl. Ser. 36, 1203-1220, (2020).
M. Amouch, O. Benchiheb, Codiskcyclic sets of operators on complex topological vector spaces, Proyecciones J. Math. 41, 1439-1456, (2022).
M. Amouch, O. Benchiheb, On a class of super-recurrent operator, Filomat 36, 3701-3708, (2022).
F. Bayart, E. Matheron, Dynamics of linear operators, Cambridge Univ. Press, (2009).
O. Benchiheb, M. Amouch, On recurrent sets of operators, Bol. Soc. Parana. Mat. 42, 1-9, (2024).
O. Benchiheb, M. Amouch, Subspace-super recurrence of operators, Filomat 38, 3093-3103, (2024).
O. Benchiheb, F. Sadek, M. Amouch, On super-rigid and uniformly super-rigid operators, Afrika Mat. 34, 6, (2023).
G. D. Birkhoff, Demonstration d’un theoreme elementaire sur les fonctions entieres, C. R. Acad. Sci. Paris 189, 473-475, (1929).
A. Bonilla, K. G. Grosse-Erdmann, A. Lopez-Martınez, A. Peris, Frequently recurrent operators, J. Funct. Anal. 283, 109713, (2022).
G. Costakis, A. Manoussos, I. Parissis, Recurrent linear operators, Complex Anal. Oper. Theory 8, 1601-1643, (2014).
G. Costakis, I. Parissis, Szemeredi’s theorem, frequent hypercyclicity and multiple recurrence, Math. Scand. 110, 251-272, (2012).
G. Costakis, A. Manoussos, J-class operators and hypercyclicity, J. Oper. Theory 67, 101-119, (2012).
T. Eisner, S. Grivaux, Hilbertian Jamison sequences and rigid dynamical systems, J. Funct. Anal. 261, 2013-2052, (2011).
T. Eisner, Rigidity of contractions on Hilbert spaces, Preprint, arXiv:0909.4695, (2009).
H. Furstenberg, B. Weiss, The finite multipliers of infinite ergodic transformations, Lect. Notes Math. 668, 127-132, (1978).
H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, (2014).
V. J. Galan, F. Martınez Jimenez, P. Oprocha, A. Peris, Product recurrence for weighted backward shifts, Appl. Math. Inf. Sci. 9, 2361-2365, (2015).
S. Glasner, D. Maon, Rigidity in topological dynamics, Ergod. Theory Dyn. Syst. 9, 309-320, (1989).
W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc., (1955).
S. Grivaux, E. Matheron, Q. Menet, Linear dynamical systems on Hilbert spaces: typical properties and explicit examples, Amer. Math. Soc., (2021).
D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99, 179-190, (1991).
D. A. Herrero, Approximation of Hilbert space operators, Pitman, (1982).
N. Karim, O. Benchiheb, M. Amouch, Recurrence of multiples of composition operators on weighted Dirichlet spaces, Adv. Oper. Theory 7, 23, (2022).
N. Karim, O. Benchiheb, M. Amouch, Faber-hypercyclic semigroups of linear operators, Filomat 38, 8869-8876, (2024).
N. Karim, O. Benchiheb, M. Amouch, Disjoint strong transitivity of composition operators, Collect. Math. 75, 171-187, (2024).
K. G. Grosse-Erdmann, A. Peris, Linear chaos, Springer, (2011).
H. Poincare, Sur le probleme des trois corps et les equations de la dynamique, Acta Math. 13, A3-A270, (1890).
E. M. Sadouk, O. Benchiheb, M. Amouch, Disjoint topologically super-recurrent operators, Filomat 38, 10495-10504, (2024).
E. M. Sadouk, O. Benchiheb, M. Amouch, C-Recurrent operators, Palestine J. Math. 13, (2024).
G. Tian, B. Hou, Limits of J-class operators, Proc. Amer. Math. Soc. 142, 1663-1667, (2014).
Z. Yin, Y. Wei, Recurrence and topological entropy of translation operators, J. Math. Anal. Appl. 460, 203-215, (2018).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



