Some symmetric holomorphic function subfamilies and their hankel determinants involving the $( \mathfrak{p} , \mathfrak{q} )$-derivative operator
Abstract
Coefficient function estimates play a vital role in building a mathematical framework for nonlocal problems, providing the groundwork necessary to develop innovative methods that enhance the precision and efficiency of engineering applications in applied science fields. In this study, we establish coefficient bounds for normalized holomorphic functions of the form
$$ \mathfrak{f} (z) = z + \sum_{ \ell =1}^\infty \mathfrak{b}_ { \jmath \ell +1} z^{ \jmath \ell +1}, \; \left(z \in \mathbb{U} := \{z \in \mathbb{C}:\,|z| < 1\}, \; \jmath \in \mathbb{N}:=\{1,2,3, \cdots\}, \; \mathfrak{b}_ { \jmath \ell +1} \in \mathbb{C}\right),$$
that belongs to some subfamilies of $ \jmath $-fold symmetric functions defined by the $( \mathfrak{p} , \mathfrak{q} )$-derivative operator. The derived estimates pertain to the bounds of $\left| \mathfrak{b}_ { \jmath +1}\right|$, $\left| \mathfrak{b}_ {2 \jmath +1}\right|$, and $\left| \mathfrak{b}_ {3 \jmath +1}\right|$, along with the Fekete--Szeg\"{o} funtional $\left| \mathfrak{b}_ {2 \jmath +1} -\mu \mathfrak{b}_{ \jmath +1}^2\right|$. Additionally, we obtain the upper bound of the second Hankel determinant $\left| \mathfrak{b}_ { \jmath +1} \mathfrak{b}_{3 \jmath +1} - \mathfrak{b}_{2 \jmath +1}^2\right|$, which serves as an important indicator of the relationship between the coefficients. Python 3.12 (2023) was used for graphical illustrations and verification to confirm the accuracy of our comprehensive theoretical results.
Downloads
References
P. L. Duren, Univalent Functions, Grundlehren der Math. Wiss., vol. 259, Springer, New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
M. Lewin, ”On a coefficient problem for bi-univalent functions,” Proc. Am. Math. Soc., vol. 18, no. 1, pp. 63–68, 1967.
D. A. Brannan and J. J. Clunie, eds., Aspects of Contemporary Complex Analysis, Academic Press, London, UK; New York, NY, USA, 1980.
E. Netanyahu, ”The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1,” Arch. Ration. Mech. Anal., vol. 32, no. 1, pp. 100–112, 1969.
D. Tan, ”Coefficient estimates for bi-univalent functions,” Chin. Ann. Math., Ser. A, vol. 5, no. 5, pp. 559–568, 1984.
H. M. Srivastava, A. K. Mishra, and P. Gochhayat, ”Certain subclasses of analytic and bi-univalent functions,” Appl. Math. Lett., vol. 23, no. 10, pp. 1188–1192, 2010.
P. Sharma, S. Sivasubramanian, and N. E. Cho, ”Initial coefficient bounds for certain new subclasses of bi-Bazilevic functions and exponentially bi-convex functions with bounded boundary rotation,” Axioms, vol. 13, no. 1, article 25, 2024.
S. Kazimoglu, E. Deniz, and C. Cotirla, ”Certain subclasses of analytic and bi-univalent functions governed by the Gegenbauer polynomials linked with q-derivative,” Mathematics, vol. 11, no. 6, article 1192, 2023.
P. O. Sabir, ”Some remarks on subclasses of bi-univalent functions defined by the Ruscheweyh derivative operator,” Filomat, vol. 38, no. 4, pp. 1255–1264, 2024.
H. M. Srivastava, P. O. Sabir, K. I. Absullah, N. H. Mohammed, N. Chorfi, and P. O. Mohammed, ”A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions,” AIMS Math., vol. 8, no. 12, pp. 29975–29994, 2023.
F. H. Jackson, ”On q-functions and a certain difference operator,” Proc. Edinb. Math. Soc., vol. 46, pp. 253–281, 1909.
F. H. Jackson, T. Fukuda, and O. J. Dunn, ”On q-definite integrals,” Proc. Lond. Math. Soc., vol. 41, no. 1, pp. 193–203, 1910.
P. Njionou Sadjang, ”On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas,” Results Math., vol. 73, article 39, 2018.
R. George, S. Etemad, I. Stamova, and R. Alubady, ”Existence of solutions for [p, q]-difference initial value problems: application to the [p, q]-based model of vibrating eardrums,” AIMS Math., vol. 10, no. 2, pp. 2321–2346, 2025.
H. M. Srivastava, S. Sivasubramanian, and R. Sivakumar, ”Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions,” Int. J. Anal. Math., vol. 7, no. 2, pp. 1–10, 2014.
E. J. Muthaiyan, ”(P, Q)-Lucas polynomial coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions,” Int. J. Anal. Math., vol. 36, no. 1, pp. 45–56, 2023.
M. Fekete and G. Szego, ”Eine Bemerkung uber ungerade schlichte Funktionen,” J. Lond. Math. Soc., vol. s1–8, no. 2, pp. 85–89, 1933.
S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, ”A Hong-Krahn-Szego inequality for mixed local and nonlocal operators,” Math. Eng., vol. 5, no. 1, pp. 1–25, 2023.
E. Amini, S. Al-Omari, and J. Al-Omari, ”Fekete-Szego results for certain bi-univalent functions involving q-analogues of logarithmic functions,” Results Nonlinear Anal., vol. 7, no. 3, pp. 65–79, 2024.
A. Alsoboh, M. C¸ aglar, and M. Buyankara, ”Fekete-Szego inequality for a subclass of bi-univalent functions linked to q-ultraspherical polynomials,” Contemp. Math., vol. 5, no. 2, pp. 22531–2545, 2024.
S. D. Jadhav, A. B. Patil, and I. A. Wani, ”Initial Taylor-Maclaurin coefficient bounds and the Fekete-Szego problem for subclasses of m-fold symmetric analytic bi-univalent functions,” TWMS J. Appl. Eng. Math., vol. 14, no. 1, pp.185–196, 2024.
P. O. Sabir, A. A. Lupas, S. S. Khalil, P. O. Mohammed, and M. Abdelwahed, ”Some classes of Bazilevic-type closeto-convex functions involving a new derivative operator,” Symmetry, vol. 16, no. 7, article 836, 2024.
H. M. Srivastava, P. O. Sabir, S. S. Eker, A. K. Wanas, P. O. Mohammed, N. Chorfi, and D. Baleanu, ”Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds,” J. Inequal. Appl., vol. 2024, article 47, 2024.
C. Pommerenke, ”On the coefficients and Hankel determinants of univalent functions,” J. Lond. Math. Soc., vol. 41, no. 1, pp. 111–122, 1966.
J. W. Noonan and D. K. Thomas, ”On the second Hankel determinant of areally mean p-valent functions,” Trans. Am. Math. Soc., vol. 223, pp. 337–346, 1976.
C. Min and Y. J. Chen, ”Painleve IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants,” Math. Methods Appl. Sci., vol. 46, no. 15, pp. 15270–15284, 2023.
P. O. Sabir, ”Sharp bounds on Toeplitz determinants for starlike and convex functions associated with bilinear transformations,” Symmetry, vol. 16, no. 5, article 595, 2024.
S. A. Al-Ameedee, W. G. Atshan, and F. A. Al-Maamori, ”Second Hankel determinant for certain subclasses of biunivalent functions,” J. Phys.: Conf. Ser., vol. 1664, no. 1, article 012044, 2020.
D. A. Brannan and T. Taha, ”On some classes of bi-univalent functions,” J. Math. Anal. Appl., vol. 130, no. 2, pp. 568–587, 1988.
B. A. Frasin and M. K. Aouf, ”New subclasses of bi-univalent functions,” Appl. Math. Lett., vol. 24, no. 9, pp. 1569–1573, 2011.
E. Deniz, ”Certain subclasses of bi-univalent functions satisfying subordination conditions,” J. Class. Anal., vol. 2, no.1, pp. 49–60, 2013.
S. Sivasubramanian, R. Sivakumar, S. Kanas, and S. A. Kim, ”Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent functions,” Ann. Polon. Math., vol. 113, no. 3, pp. 295–304, 2015.
E. Deniz, M. C¸ aglar, and H. Orhan, ”Second Hankel determinant for bi-starlike and bi-convex functions of order β,” Appl. Math. Comput., vol. 271, pp. 301–307, 2015.
H. Orhan, N. Magesh, and J. Yamini, ”Bounds for the second Hankel determinant of certain bi-univalent functions,” J. Inequal. Appl., vol. 2015, article 201, 2015.
W. J. Koepf, ”Coefficients of symmetric functions of bounded boundary rotation,” Math. Proc. Camb. Philos. Soc., vol. 105, no. 2, pp. 323–331, 1989.
H. M. Srivastava, A. Zireh, and S. Hajiparvaneh, ”Coefficient estimates for some subclasses of m-fold symmetric biunivalent functions,” Filomat, vol. 32, no. 9, pp. 3143–3153, 2018.
B. A. Abd and A. K. Wanas, ”Coefficient bounds for new families of m-fold symmetric bi-univalent functions defined by Bazilevic convex functions,” Earthline J. Math. Sci., vol. 14, no. 1, pp. 105–117, 2024.
P. O. Sabir, H. M. Srivastava, W. G. Atshan, P. O. Mohammed, N. Chorfi, and M. Vivas-Cortez, ”A family of holomorphic and m-fold symmetric bi-univalent functions endowed with coefficient estimate problems,” Mathematics, vol. 11, no. 18, article 3970, 2023.
W. Al-Rawashdeh, ”Fekete-Szeg¨o functional of a subclass of bi-univalent functions associated with Gegenbauer polynomials,” Eur. J. Pure Appl. Math., vol. 17, no. 1, pp. 105–115, 2024.
P. O. Sabir, R. P. Agarwal, S. J. Mohammedfaeq, P. O. Mohammed, N. Chorfi, and T. Abdeljawad, ”Hankel determinant for a general subclass of m-fold symmetric bi-univalent functions defined by Ruscheweyh operators,” J. Inequal. Appl., vol. 2024, article 14, 2024.
H. U. Rehman, K. A. Mashrafi, and J. Salah, ”Estimating the second-order Hankel determinant for the subclass of bi-close-to-convex functions of complex order,” Malays. J. Math. Sci., vol. 18, no. 1, pp. 1–12, 2024.
Q. A. Shakir and W. G. Atshan, ”On third Hankel determinant for a certain subclass of bi-univalent functions,” Symmetry, vol. 16, no. 2, article 239, 2024.
F. H. Jackson, ”On q-difference equations,” Am. J. Math., vol. 32, no. 4, pp. 305–314, 1910.
G. V. Milovanovic, V. Gupta, and N. Malik, ”(p, q)-β functions and applications in approximation,” Bol. Soc. Mat. Mex., vol. 24, no. 1, pp. 219–237, 2018.
B. A. Frasin, S. R. Swamy, A. Amourah, J. Salah, and R. H. Maheshwarappa, ”A family of bi-univalent functions defined by (p, q)-derivative operator subordinate to a generalized bivariate Fibonacci polynomials,” Eur. J. Pure Appl. Math., vol. 17, no. 4, pp. 3801–3814, 2024.
H. M. Srivastava, N. Raza, E. S. Abujarad, G. Srivastava, and M. Abujarad, ”Fekete-Szego inequality for classes of (p, q)-starlike and (p, q)-convex functions,” Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., vol. 113, no. 4, pp.3563–3584, 2019.
F. R. Keogh and E. P. Merkes, ”A coefficient inequality for certain classes of analytic functions,” Proc. Am. Math. Soc., vol. 20, no. 1, pp. 8–12, 1969.
U. Grenander and G. Szeg¨o, Toeplitz Forms and Their Applications, 2nd ed., Univ. Calif. Press, 1958.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



