Some properties on the class of $\sigma$-un-Dunford-Pettis operators in Banach lattice

Abstract

In this work, we studied more properties concerning the class of $\sigma$-un-Dunford-Pettis operators on Banach lattices. Precisely, we present a characterization of $\sigma$-un-Dunford-Pettis operators, it's an extension of Proposition 3.2 obtained by N. Hafidi et al in their article, and another characterization of Banach lattices for which each $\sigma$-un-Dunford-Pettis operator $T:E\to E$ is $\sigma$-un-compact (respectively, $\sigma$-uaw-compact) and $T^{2}$ is $\sigma$-un-compact. Additionally, we give sufficient conditions under which $T$ is a $\sigma$-un-Dunford-Pettis operator if and only if $|T|$ is a $\sigma$-un-Dunford-Pettis operator. Furthermore, we introduce a new property that generalizes the Dunford-Pettis property, which we call the $\sigma$-un-Dunford-Pettis property. After that, we investigate proprieties about this new property. On the other side, we examined its connections with the other classes of operators as u-M-weakly compact and AM-$\sigma$-un-compact. Finally, we presented a necessary and sufficient condition under which for each $\sigma$-un-Dunford-Pettis operator is u-M-weakly compact and under which for each AM-$\sigma$-un-compact is $\sigma$-un-Dunford-Pettis operator.

Downloads

Download data is not yet available.

References

Hafidi, N. and H’michane, J., Some results on the class of σ-unbounded Dunford-Pettis operators. Commentationes Mathematicae Universitatis Carolinae. 62(4), 431-443 (2021). http://doi.org/10.14712/1213-7243.2021.035

Aliprantis, C. D. and Burkinshaw, O., Positive operators. reprint of the 1985 original. Springer, Dordrecht (2006)

Aqzzouz, B., Nouira, R. and Zroula, L., Compactness of AM-compact operators on Banach lattices. Annales des sciences mathematiques du Quebec. 31(1), 1-11 (2007).

Aqzzouz, B., Elbour, A. and H’michane, J., The duality problem for the class of b-weakly compact operators. Positivity. 13(4), 683-692 (2009). https://doi.org/10.1007/s11117-008-2288-6

Chen, Z. L. and Wickstead, A. W., L-weakly and M-weakly compact operators. Indagationes Mathematicae, 10(3), 321-336 (1999). https://doi.org/10.1016/s0019-3577(99)80025-1

Kandic, M., Marabeh, M. A. A. and Troitsky, V. G., Unbounded norm topology in Banach lattices. Journal of Mathematical Analysis and Applications, 451(1), 259-279 (2017). https://doi.org/10.1016/j.jmaa.2017.01.041

Meyer-Nieberg, P.: Banach lattices. Universitext. Springer-Verlag, Berlin (1991). https://doi.org/10.1007/978-3-642-76724-1

Groenewegen, G. and Rooij, v. A., The modulus of a weakly compact operator. Mathematische Zeitschrift, 195, 473-480 (1987). https://doi.org/10.1007/BF01166700

Niktab, Z., Azar, K. H., Alavizadeh, R. and Gavgani, S. S., Some Properties of Unbounded M-Weakly and Unbounded L-Weakly Compact Operators. Hindawi Journal of Mathematics (2023). https://doi.org/10.1155/2023/7178550

Ozcan, N. E., Gezer, N. A. and Zabeti, O., Unbounded absolutely weak Dunford-Pettis operators. Turkish Journal of Mathematics. 43, 2731-2740 (2019). https://doi.org/10.3906/mat-1904-27

Wnuk, W., Some characterizations of Banach lattices with the Schur property. Revista matematica de la Universidad Complutense de Madrid. 2, 217-224 (1989). https://doi.org/10.5209/rev-REMA.1989.v2.18108

Zraoula, L., ouba, I., H’michane, J. and Wahbi, B. El., On the class of unbounded-U-Dunford-Pettis operators. Filomat. 38:25, 8701-8713 (2024). https://doi.org/10.2298/FIL2425701Z

Zabeti, O., Unbounded absolute weak convergence in Banach lattices. Positivity. 22(2), 501-505 (2018). https://doi.org/10.1007/s11117-017-0524-7

Published
2025-08-25
Section
Research Articles