Some properties on the class of $\sigma$-un-Dunford-Pettis operators in Banach lattice
Abstract
In this work, we studied more properties concerning the class of $\sigma$-un-Dunford-Pettis operators on Banach lattices. Precisely, we present a characterization of $\sigma$-un-Dunford-Pettis operators, it's an extension of Proposition 3.2 obtained by N. Hafidi et al in their article, and another characterization of Banach lattices for which each $\sigma$-un-Dunford-Pettis operator $T:E\to E$ is $\sigma$-un-compact (respectively, $\sigma$-uaw-compact) and $T^{2}$ is $\sigma$-un-compact. Additionally, we give sufficient conditions under which $T$ is a $\sigma$-un-Dunford-Pettis operator if and only if $|T|$ is a $\sigma$-un-Dunford-Pettis operator. Furthermore, we introduce a new property that generalizes the Dunford-Pettis property, which we call the $\sigma$-un-Dunford-Pettis property. After that, we investigate proprieties about this new property. On the other side, we examined its connections with the other classes of operators as u-M-weakly compact and AM-$\sigma$-un-compact. Finally, we presented a necessary and sufficient condition under which for each $\sigma$-un-Dunford-Pettis operator is u-M-weakly compact and under which for each AM-$\sigma$-un-compact is $\sigma$-un-Dunford-Pettis operator.
Downloads
References
Hafidi, N. and H’michane, J., Some results on the class of σ-unbounded Dunford-Pettis operators. Commentationes Mathematicae Universitatis Carolinae. 62(4), 431-443 (2021). http://doi.org/10.14712/1213-7243.2021.035
Aliprantis, C. D. and Burkinshaw, O., Positive operators. reprint of the 1985 original. Springer, Dordrecht (2006)
Aqzzouz, B., Nouira, R. and Zroula, L., Compactness of AM-compact operators on Banach lattices. Annales des sciences mathematiques du Quebec. 31(1), 1-11 (2007).
Aqzzouz, B., Elbour, A. and H’michane, J., The duality problem for the class of b-weakly compact operators. Positivity. 13(4), 683-692 (2009). https://doi.org/10.1007/s11117-008-2288-6
Chen, Z. L. and Wickstead, A. W., L-weakly and M-weakly compact operators. Indagationes Mathematicae, 10(3), 321-336 (1999). https://doi.org/10.1016/s0019-3577(99)80025-1
Kandic, M., Marabeh, M. A. A. and Troitsky, V. G., Unbounded norm topology in Banach lattices. Journal of Mathematical Analysis and Applications, 451(1), 259-279 (2017). https://doi.org/10.1016/j.jmaa.2017.01.041
Meyer-Nieberg, P.: Banach lattices. Universitext. Springer-Verlag, Berlin (1991). https://doi.org/10.1007/978-3-642-76724-1
Groenewegen, G. and Rooij, v. A., The modulus of a weakly compact operator. Mathematische Zeitschrift, 195, 473-480 (1987). https://doi.org/10.1007/BF01166700
Niktab, Z., Azar, K. H., Alavizadeh, R. and Gavgani, S. S., Some Properties of Unbounded M-Weakly and Unbounded L-Weakly Compact Operators. Hindawi Journal of Mathematics (2023). https://doi.org/10.1155/2023/7178550
Ozcan, N. E., Gezer, N. A. and Zabeti, O., Unbounded absolutely weak Dunford-Pettis operators. Turkish Journal of Mathematics. 43, 2731-2740 (2019). https://doi.org/10.3906/mat-1904-27
Wnuk, W., Some characterizations of Banach lattices with the Schur property. Revista matematica de la Universidad Complutense de Madrid. 2, 217-224 (1989). https://doi.org/10.5209/rev-REMA.1989.v2.18108
Zraoula, L., ouba, I., H’michane, J. and Wahbi, B. El., On the class of unbounded-U-Dunford-Pettis operators. Filomat. 38:25, 8701-8713 (2024). https://doi.org/10.2298/FIL2425701Z
Zabeti, O., Unbounded absolute weak convergence in Banach lattices. Positivity. 22(2), 501-505 (2018). https://doi.org/10.1007/s11117-017-0524-7
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



