Unit group of group algebras of non abelian group of order up to 30
Abstract
In this paper, we characterize the structure of unit group of semisimple group algebra $F_{q}G$, where $G$ is non abelian group of order up to 30 and $F_{q}$ is a field of order $q(=p^{k})$, p is a prime number. In particular, we have characterized the structure of unit group of group algebra of 7 non abelian groups of order 16, $C_{7}\rtimes C_{3}$ of order 21, $C_{9}\rtimes C_{3}$ of order 27, $C_{7}\rtimes C_{4}$ of order 28 and $C_{5}\times S_{3}$ of order 30. Unit groups of semisimple group algebras for non abelian groups up to order 30 have now been thoroughly studied.
Downloads
References
Ansari, S. F., Sahai, M., Unit groups of group algebras of groups of order 20, Quaest. Math. 44 (2021), no. 4, 503–511.
Dietzel C., Mittal, G., Summands of finite group algebras, Czech. Math. J. (2021), 1–4.
Ferraz, R. A., Simple components of the center of F G/J(F G), Comm. Algebra 36 (2008), no. 9, 3191–3199.
Gaohua, T., Yanyan, G., The unit groups of F G of groups with order 12, Int. J. Pure Appl. Math. 73 (2011), no. 2, 143–158.
Gildea, J., Units of group algebras of non-abelian groups of order 16 and exponent 4 over F2k , Results Math. 61 (2012), no. 3-4, 245–254.
Khan, M., Structure of the unit group of F D10 , Serdica Math. J. 35 (2009), no. 1, 15–24.
Lidl R., Niederreiter, H., Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, 1994.
Makhijani, N., Sharma, R. K. and J. B. Srivastava, The unit group of Fq[D30], Serdica Math. J. 41 (2015), no. 2-3, 185–198.
Milies, C. P., Sehgal, S. K. An Introduction to Group Rings, Algebras and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002.
Sahai, M. Ansari, S. F., Unit groups of group algebras of certain dihedral groups, Malays. J. Math. Sci. 14 (2020), no. 3, 419–436.
Sahai, M., Ansari, S. F.,Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math. 12 (2019), no. 4, 1950066.
Sahai M., Ansari, S. F., Unit groups of semisimple group algebras of certain dihedral groups, Serdica Math. J. 45 (2019), no. 4, 305-316.
Sahai M., Ansari, S. F., Unit groups of group algebras of groups of order 18 , Comm. Algebra 49 (2021), no. 8, 3273–3282.
Sahai M., Ansari, S. F., Unit groups of the finite group algebras of generalized quaternion groups, J. Algebra Appl. 19 (2020), no. 6, 2050112.
Sahai M., Ansari, S. F.,Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math. 14 (2021), no. 3, 2150030.
Sahai M., Ansari, S. F., The structure of the unit group of the group algebra F (C3 × D10) , Ann. Math. Inform. 54 (2021), 73–82.
Sahai, M., Ansari, S. F., Group of units of finite group algebras for groups of order 24, Ukr. Math. J.75 (2023), no. 2, 244–261.
Sharma, R. K., Kumar, Y., Mishra, D. C., A note on the structure of U(Fq((Z3 × Z3) ⋊ Z3)) , Palest. J. Math. 13 (2024), no. 2, 202-209.
Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of FS3, Acta Math. Acad. Paedagog. Nyh’azi. 23 (2007), no. 2, 129–142.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



