Contraction principle in bicomplex valued $G$-metric spaces and its application in the system of linear equations

  • Krishna Bhattacharjee
  • RAKHAL DAS Tripura University, Agartala
  • Binod Chandra Tripathy
  • Bipan Hazarika

Abstract

In this paper, we established bicomplex valued $G$-metric spaces and introduced the notion of $G$-Banach Contraction mapping, $G$-Kannan mapping, $G$-Bianchini Contraction mapping and prove fixed point theorems in such spaces. We also provide some non-trivial examples and applications of this theory part to demonstrate the validity of our proven results.

Downloads

Download data is not yet available.

References

A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G-metric spaces, Filomat, in press.

A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Number. Funct. Anal. Optim. 32 (2011), 243-253.

B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.

B. C. Dhage, On generalized metric spaces and topological structure II, Pure Applied Math. Sci., 40 (1994), 37-41.

B. C. Dhage, A common fixed point principle in D-metric spaces, Bull. Calcutta Math. Soc., 91 (1999), 475-480.

B. C. Dhage, Generalized metric spaces and topological structure I, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 46(1) (2000), 3-24.

C. Segre, Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici, Math. Ann., 40, 1892, 413-467.

C. Klin-eam and C. Suanoom, Some common fixed-point theorems for generalized-contractive-type mappings on complex-Valued Metric Spaces, Abst. Appl. Anal. (2013), Article ID 604215, 6 pages. doi.org/10.1155/2013/604215

C. Klin-eam, C. Suanoom and S. Suantai, Generalized multi-valued mappings satisfy some inequalities conditions on metric spaces, J. Ineq. Appl. 343 (2015) DOI 10.1186/s13660-015-0864-4.

C. Klin-eam, & C. Suanoom, On complex valued Gb-metric spaces and related fixed point theorems. International Journal of Nonlinear Analysis and Applications, 12(1),(2021), 748-760.

C. Suanoom, C. Chanmanee, and P. Muangkarn, Fixed point theorems for R′′-Kanan mapping in b-metric spaces, The 24th Annual Meeting in Mathematics (AMM 2019), (2019) Full Paper for AMM 2019 Proceedings.

F.Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl. 64 (2012) 1866-1874.

G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, New York, 1991.

I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989) 26–37.

I. Beg, S. K. Datta, & D. Pal, Fixed point in bicomplex valued metric spaces. International Journal of Nonlinear Analysis and Applications, 12(2)(2021), 717-727.

J. Choi, S. K. Datta, T. Biswas, and N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spacess, Honam Mathematical J., 39(1), 2017, 115-126.

M. Abbas, T. Nazir, S. Radenovi´c, Some periodic point results in generalized metric spaces. Appl. Math. Comput. (2010), 217, 4094-4099. [CrossRef]

M. Abbas, A. Hussain, B. Popovi´c, S. Radenovi´c, Istratescu-Suzuki-´Ciri´c-type fixed points results in the framework of G-metric spaces. J. Nonlinear Sci. Appl. (2016), 9, 6077-6095. [CrossRef]

M. Abbas, T. Nazir, , S. Radenovi´c, Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces. Appl. Math. Comput. (2012), 218, 9383-9395. [CrossRef]

M. Abbas, T. Nazir, S. Radenovi´c, Common fixed point of power contraction mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. (2013), 219, 7663-7670. [CrossRef]

M. E. Luna-Elizarrar´as, M. Shapiro, D.C. Struppa and A. Vajiac, Bicomplex numbers and their elementary functions, Cubo., 14(2), 2012, 61-80.

R. Kannan, Some results on fixed points-II, Amer. Math. Month. 76 (1969) 405-408.

R. P. Agarwal and E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theo. Appl. (2013).

S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math. (3) (1922) 133-181.

S. M. Kang, B. Singh, V. Gupta and S. Kumar, Contraction principle in complex valued G-Metric spaces, Int. J. Math. Anal. 7 (2013) 2549–2556.

S. Ghaler, 2-metrische raume und ihre topologische strukture, Math. Nachr. 26 (1963) 115-148.

W. Khuangsatung, S. Chan-iam, P.Muangkarn and C. Suanoom, The rectangular quasi-metric space and common fixed point theorem for ψ-contraction and ψ-Kannan mappings, Thai J. Math., Special Issue: Annual Meeting in Mathematics 2019, (2020) 89-101.

W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Ineq. Appl. 84 (2012).

Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theo. Appl. (2009), vol. Article ID 917175, 10 pages

Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in Proc. Inter. Conf. Fixed Point Theo. Appl. Valencia, Spain, July. (2004) 189-198.

Published
2025-07-03
Section
Articles