A new investgation on Steinberg groups $^3{}D_4(q)$
Abstract
In this paper, we prove that simple groups $^3{}D_4(q)$, where $q^4-q^2+1$ is a prime number can be uniquely determined by the order of group and the second largest element order.
Downloads
Download data is not yet available.
References
\bibitem{art:Chen1} G. Y. Chen.
On the structure of Frobenius groups and $2$-Frobenius groups,
\emph{J. Southwest China Normal University},
{\bf20}, no. 5, (1995), 485-487.
\bibitem{art:Chen2} G. Y. Chen, L. G. He, J. H. Xu.
A new characterization of sporadic simple groups,
\emph{Italian journal of pure and mathematics},
{\bf 30}, (2013), 373-392.
\bibitem{art:Chen3} G. Y. Chen, L. G. He.
A new characterization of $L_2(q)$ where $q=p^n<125$
\emph{Italian journal of pure and mathematics},
{\bf }38,(2011), 125-134.
\bibitem{art:Chen4} G. Y. Chen, L. G. He.
A new characterization o simple $K_4$ -group with type $L_2(p)$
\emph{Advanced in mathematics(china)},
{\bf43 }, no.5, (2014), 667-670.
\bibitem{art:Ebrahimzadeh} B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian, H. Parvizi Mosaed.
A Characterization of the suzuki groups by order and the largest elements order
\emph{J. Sci. Islamic. Rep. Iran},
{\bf27 }, no. 4, (2016), 353-355.
\bibitem{art:Ebrahimzadeh1} B. Ebrahimzadeh, R. Mohammadyari,
A new characterization of projective special unitary groups $PSU_3(3^n)$,
\emph{Discussiones Mathematicae General Algebra and Applications},
{\bf39 }, (2019), 35-41.
\bibitem{art:Ebrahimzadeh2} B. Ebrahimzadeh, M. Y. Sadeghi, A. Iranmanesh, A. Tehranian,
A new characterization of symplectics groups $PSP(8,q)$,
\emph{Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi},
{\bf 66}, no.1,(2020), p93-99, 7p.
\bibitem{art:Ebrahimzadeh3} B. Ebrahimzadeh, R. Mohammadyari, M. Y. Sadeghi,
A new characterization of simple groups $C_4(q)$ by its order and the largest order of elements,
\emph{Acta et Commentationes Universitatis Tartuensis de Mathematica},
{\bf 23}, no. 2, (2019), 283-290.
\bibitem{art:Ebrahimzadeh4} B. Ebrahimzadeh,
Recognition of the simple groups $^2{}D_8(2^n)^2)$ by its order and the largest order of elements,
\emph{Analele universitatii de vest Timisoara seria Mathematica Informatica LvII},
{\bf 2} (2019),1-8.
\bibitem{art:Ebrahimzadeh5} B. Ebrahimzadeh, A. R. Khalili Asboei,
A characterization of symplectic groups related to Fermat primes,
\emph{Commentationes Mathematicae Universitatis Carolinae},
{\bf 62}, no.1, (2021), 33-40.
\bibitem{art:Ebrahimzadeh6} B. Ebrahimzadeh,
A new characterization of simple groups $^2{}D_n (3)$,
\emph{Transactions Issue Mathematics, Azerbaijan National Academy of Sciences},
{\bf 41}, no. 4, (2021), 57-62.
\bibitem{art:Ebrahimzadeh7}B. Ebrahimzadeh, B. Azizi,
A characterization of projective special linear groups $ PSL (5, 2)$ and $PSL (4, 5)$,
\emph{Annals of the Alexandru Ioan Cuza University-Mathematics},
{\bf 68}, no. 1, (2022), p.133-140. 8p.
\bibitem{art:Ebrahimzadeh8} B. Ebrahimzadeh,
On the Suzuki Groups,
\emph{Asian Journal of Pure and Applied Mathematics},
{\bf 3}, no.1, (2021), 67-71.
\bibitem{book:Gor} D. Gorenstein.
Finite groups, Harper and Row, New York,
(1980).
\bibitem{book:He} L. G. He, G. Y. Chen.
A new characterization of $L_3(q)$ $(q\le 8)$ and $U_3(q)$ $(q\le 11)$,
\emph{J. Southwest Univ. (Natur.Sci.)},
{\bf27 }, no.33,(2011), 81-87.
\bibitem{art:Kantor} W. M. Kantor, A. Seress.
Large element orders and the characteristic of Lie-type simple groups,
\emph{J. Algebra},
{\bf 322},(2009), 802-832.
\bibitem{art:Kondrat'ev} A. S. Kondrat'ev,
Prime graph components of finite simple groups,
\emph{Mathematics of the USSR-Sbornik},
{\bf 67}(1)(1990), 235-247 .
\bibitem{book:Li} J. Li, W. J. Shi, D. Yu.
A characterization of some $PGL(2,q)$ by maximum element orders,
\emph{Bull.Korean Math.Soc},
{\bf 52}, no. 6, (2015), 2025-2034.
\bibitem{art:Shi5} Shi, W.J.-
A characterization of $U_3(2^n)$ by their element orders
\emph{ J Southwest-China Normal Univ},
{\bf 25}(4)(2000), 353-360
\bibitem{art:Will} J. S. Williams.
Prime graph components of finite groups,
\emph{J. Algebra},
{\bf 69}, no. 2,(1981), 487-513.
\bibitem{art:Dapeng}D. Yu, J. Li, G. Chen, L. Zhang and W.J. Shi,
A new characterization of simple $K_5$-groups of type $L_3(p)$
\emph{Bull. Iranian Math. Soc},
{\bf 45}(2019), 771-781.
\bibitem{art:Zav} A. V. Zavarnitsine.
Recognition of the simple groups $L_3(q)$ by element orders,
\emph{J. Group Theory},
{\bf 7}, no.1, (2004), 81-97.
On the structure of Frobenius groups and $2$-Frobenius groups,
\emph{J. Southwest China Normal University},
{\bf20}, no. 5, (1995), 485-487.
\bibitem{art:Chen2} G. Y. Chen, L. G. He, J. H. Xu.
A new characterization of sporadic simple groups,
\emph{Italian journal of pure and mathematics},
{\bf 30}, (2013), 373-392.
\bibitem{art:Chen3} G. Y. Chen, L. G. He.
A new characterization of $L_2(q)$ where $q=p^n<125$
\emph{Italian journal of pure and mathematics},
{\bf }38,(2011), 125-134.
\bibitem{art:Chen4} G. Y. Chen, L. G. He.
A new characterization o simple $K_4$ -group with type $L_2(p)$
\emph{Advanced in mathematics(china)},
{\bf43 }, no.5, (2014), 667-670.
\bibitem{art:Ebrahimzadeh} B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian, H. Parvizi Mosaed.
A Characterization of the suzuki groups by order and the largest elements order
\emph{J. Sci. Islamic. Rep. Iran},
{\bf27 }, no. 4, (2016), 353-355.
\bibitem{art:Ebrahimzadeh1} B. Ebrahimzadeh, R. Mohammadyari,
A new characterization of projective special unitary groups $PSU_3(3^n)$,
\emph{Discussiones Mathematicae General Algebra and Applications},
{\bf39 }, (2019), 35-41.
\bibitem{art:Ebrahimzadeh2} B. Ebrahimzadeh, M. Y. Sadeghi, A. Iranmanesh, A. Tehranian,
A new characterization of symplectics groups $PSP(8,q)$,
\emph{Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi},
{\bf 66}, no.1,(2020), p93-99, 7p.
\bibitem{art:Ebrahimzadeh3} B. Ebrahimzadeh, R. Mohammadyari, M. Y. Sadeghi,
A new characterization of simple groups $C_4(q)$ by its order and the largest order of elements,
\emph{Acta et Commentationes Universitatis Tartuensis de Mathematica},
{\bf 23}, no. 2, (2019), 283-290.
\bibitem{art:Ebrahimzadeh4} B. Ebrahimzadeh,
Recognition of the simple groups $^2{}D_8(2^n)^2)$ by its order and the largest order of elements,
\emph{Analele universitatii de vest Timisoara seria Mathematica Informatica LvII},
{\bf 2} (2019),1-8.
\bibitem{art:Ebrahimzadeh5} B. Ebrahimzadeh, A. R. Khalili Asboei,
A characterization of symplectic groups related to Fermat primes,
\emph{Commentationes Mathematicae Universitatis Carolinae},
{\bf 62}, no.1, (2021), 33-40.
\bibitem{art:Ebrahimzadeh6} B. Ebrahimzadeh,
A new characterization of simple groups $^2{}D_n (3)$,
\emph{Transactions Issue Mathematics, Azerbaijan National Academy of Sciences},
{\bf 41}, no. 4, (2021), 57-62.
\bibitem{art:Ebrahimzadeh7}B. Ebrahimzadeh, B. Azizi,
A characterization of projective special linear groups $ PSL (5, 2)$ and $PSL (4, 5)$,
\emph{Annals of the Alexandru Ioan Cuza University-Mathematics},
{\bf 68}, no. 1, (2022), p.133-140. 8p.
\bibitem{art:Ebrahimzadeh8} B. Ebrahimzadeh,
On the Suzuki Groups,
\emph{Asian Journal of Pure and Applied Mathematics},
{\bf 3}, no.1, (2021), 67-71.
\bibitem{book:Gor} D. Gorenstein.
Finite groups, Harper and Row, New York,
(1980).
\bibitem{book:He} L. G. He, G. Y. Chen.
A new characterization of $L_3(q)$ $(q\le 8)$ and $U_3(q)$ $(q\le 11)$,
\emph{J. Southwest Univ. (Natur.Sci.)},
{\bf27 }, no.33,(2011), 81-87.
\bibitem{art:Kantor} W. M. Kantor, A. Seress.
Large element orders and the characteristic of Lie-type simple groups,
\emph{J. Algebra},
{\bf 322},(2009), 802-832.
\bibitem{art:Kondrat'ev} A. S. Kondrat'ev,
Prime graph components of finite simple groups,
\emph{Mathematics of the USSR-Sbornik},
{\bf 67}(1)(1990), 235-247 .
\bibitem{book:Li} J. Li, W. J. Shi, D. Yu.
A characterization of some $PGL(2,q)$ by maximum element orders,
\emph{Bull.Korean Math.Soc},
{\bf 52}, no. 6, (2015), 2025-2034.
\bibitem{art:Shi5} Shi, W.J.-
A characterization of $U_3(2^n)$ by their element orders
\emph{ J Southwest-China Normal Univ},
{\bf 25}(4)(2000), 353-360
\bibitem{art:Will} J. S. Williams.
Prime graph components of finite groups,
\emph{J. Algebra},
{\bf 69}, no. 2,(1981), 487-513.
\bibitem{art:Dapeng}D. Yu, J. Li, G. Chen, L. Zhang and W.J. Shi,
A new characterization of simple $K_5$-groups of type $L_3(p)$
\emph{Bull. Iranian Math. Soc},
{\bf 45}(2019), 771-781.
\bibitem{art:Zav} A. V. Zavarnitsine.
Recognition of the simple groups $L_3(q)$ by element orders,
\emph{J. Group Theory},
{\bf 7}, no.1, (2004), 81-97.
Published
2025-10-30
Issue
Section
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



