$ \alpha _i$-properties, selection principles and the ideals
Abstract
Ko\v{c}inac \cite{KDR} introduced several $ \alpha_i $-properties as a selection principles and there were motivated by Arhangel'skii \cite{AAV} $ \alpha_i $-local properties. In this paper, we identify some classes $ \mathcal{A} $ and $ \mathcal{B} $ of open covers in topological spaces, topological groups, hyperspaces and abstract boundedness for which the Ko\v{c}inac $ \alpha_i (\mathcal{A}, \mathcal{B}) $-properties are closely related and often equivalent to $ S_1 (\mathcal{A}, \mathcal{B}) $, using the notion of an ideal. Further we introduce the ideal form of Hurewicz-bounded topological group and characterize it using these $ \alpha_i $-properties.
Downloads
References
Arhangel’skii, A.V., The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Doklady. 13, 1185-1189, (1972).
Babinkostova, L., Kocinac, Lj.D.R., Scheepers, M., Combinatorics of open covers (XI), Topology Appl. 154, 1269-1280, (2007).
Caserta, A., Maio, G.D., Kocinac, Lj.D.R., Meccariello, E., Application of k-covers II, Topology Appl. 153, 3277-3293, (2006).
Das, P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39(2), 637-650, (2013).
Das, P., Chandra, D., Some further results on I − γ and I − γk-covers, Topology Appl. 16, 2401-2410, (2013).
Gerlits, J., Nagy, Zs., Some properties of C(X), I, Topol. Appl. 14, 151-161, (1982).
Hu, S.T., Boundedness in a topological space, Journal Math. Pures Appl. 28, 287-320, (1949).
Kocinac, Lj.D.R., Selection principles related to αi-properties, Taiwanese Journal of Mathematics 12(3), 561-571, (2008).
Lj.D.R. Kocinac, S. Konca, S. Singh, Set star-Menger and set strongly star-Menger spaces, Mathematica Slovaca, 72 (2022), 185–196.
Kocinac, Lj.D.R., Selected results on selection principles, in: Sh. Rezapour (Ed.), Proceedings of the 3rd Seminar on Geometry and Topology, July 15-17, Tabriz, Iran, 71-104, (2004).
Maio, G.D., Meccariello, E., Naimpally, S., Bounded topologies, Applied General Topology 4, 421-444, (2003).
Maio, G.D., Kocinac, Lj.D.R., Meccariello, E., Selection principles and hyperspace topologies, Topology Appl. 153, 912-923, (2005).
Maio, G.D., Kocinac, Lj.D.R., Some covering properties of hyperspaces, Topology Appl. 17-18, 1959-1969, (2008).
Maio, G.D., Kocinac, Lj.D.R., Statistical convergence in topology, Topology Appl. 156, 28-45, (2008).
Maio, G.D., Kocinac, Lj.D.R., Meccariello, E., Application of k-covers, Acta Mathematica Sinica., English Series 22, 1151-1160, (2006).
Maio, G.D., Kocinac, Lj.D.R., Boundedness in topological spaces, Math. Vensik 60, 137-148, (2008).
Naimpally, S.A. Warrack B.D., Proximity spaces, Cambridge Tracts in Mathematics 59, Cambridge, 1970.
Scheepers, M., The combinatorics of open covers (I): Ramsey theory, Topol. Appl. 69, 31-62, (1996).
Scheepers, M., Selection principles and covering properties in topology, Note di Mathematica 22, 3-41, (2003).
Singh, S., Tyagi, B. K., Bhardwaj, M., An ideal version of star-C-Hurewicz covering property, Filomat 33(19), 6385-6393, (2019).
S. Singh, Remarks on set-Menger and related properties, Topology Appl., 280 (2020), Article No. 107278
S. Singh, A note on set-star-K-Menger spaces, Math. Slovaca, 72 (6) (2022), 1597-1604
S. Singh, Set starcompact and related spaces, Afr. Math., 32 (2021), 1389-1397
S. Singh, On set-star-K-Hurewicz spaces, Bull. Belg. Math. Soc. Simon Stevin, 28 (3) (2021), 361-372
S. Singh, On set-star-K-Menger spaces, Publ. Math. Debrecen, 100 (2022), 87-100.
S. Singh, On set star-Menger spaces, Quaestiones Mathematicae, 46 (11) 2023, 2465-2473.
S. Singh, On set star-C-Menger spaces, Quaestiones Mathematicae, 2025, 1-15, DOI: 10.2989/16073606.2025.2457694.
S. Singh, On set star-Lindelof spaces, Appl. Gen. Topology., 23 (2) (2022), 315-323.
Tsaban, Boaz., On the Kocinac αi-properties, Topology Appl. 155, 141-145, (2007).
Tsaban, Boaz., Some new directions in infinite-combinatorial topology, in: J. Bagaria, S. Todorcevic (Eds.), Set Theory, in: Trends in Mathematics, Birkhauser, 225-255, (2006).
Tyagi, B.K., Singh, S., Bhardwaj, M., Ideal analogues of some variants of Hurewicz property, Filomat 33(9), 2725-2734, (2019).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).