Analysis of bifurcation solutions to nonlinear wave equations with Corner singularities

  • Haiffa Muhsan Buite
  • Hussein Khashan Kadhim
  • Ayed E. Hashoosh University of Thi-Qar

Abstract

We investigate bifurcation solutions of a wave ODE with new nonlinear parts that involves elastic beams on elastic bases with the new nonlinear part: $-z^{2}\left(z z^{\prime \prime}+\frac{3}{2}\left(z^{\prime}\right)^{2}\right)$ by employing the local LyapunovSchmidt method. The key function that corresponds to the functional of the ODE is identified. Subsequently, we demonstrate that the key function is equivalent to a smooth function of fifth degree. This study focuses on the singularities at the corners of the fifth-degree function to conduct a bifurcation analysis of ordinary differential equation solutions, employing real analysis, functional analysis, and catastrophe theory. This study aims to establish the parametric equation of the bifurcation set (caustic) and provide a geometric interpretation, along with an analysis of the bifurcation propagation of critical points (singularities).

Downloads

Download data is not yet available.

References

Abbas, D. M., Hashoosh, A. E. and Abed, W. S. The existence of uniqueness nonstandard equilibrium problems, International Journal of Nonlinear Analysis and Applications, 12(1), 1251-1260, (2021)

Abed, W. S., Hashoosh, A. E. and Abbas, D. M. Existence results for some equilibrium problems involving Bh-monotone trifunction. In AIP Conference Proceedings 2414(1), 1-14, (2023).

Alrikabi, H. M. B., Hashoosh, A. E., & Alkhalidi, A. A. Existence results for nonlocal problems of (p, q)-Kirchhoff form. Journal of Interdisciplinary Mathematics, 24(4), 983-993, (2021).

Alwan, A. A., Naser H. A. and Hashoosh. A. E. The solutions of Mixed Hemiequilibrium Problem with application in Sobolev space, IOP Conference Series: Materials Science and Engineering, 571, 012–019, (2019).

Berczi G. Lectures on ingularities of Maps. Trinity Term. Oxford, 2010.

Danilova O. Yu., Bifurcations of extremals under symmetric and boundary singularities, Tr. Mat. Fak. Voronezh. Gos. Univ. (N.S.), No. 6, 44-53,(2001), (in Russian).

Darinskii B. M., Tcarev C. L., Sapronov Yu. I. Bifurcations of Extremals of Fredholm Functionals. Journal of Mathematical Sciences, Vol.145, pages5311-5453, (2007).

Furta S.D. and Piccione P., Global Existence of Periodic Traveling Waves of an Infinite Non-linearly Supported Beam, Regular and Chaotic Dynamics, Vol. 7, No. 1, (2002).

GnezdilovA. V., Corner singularities of Fredholm functional, Scientific Journal Proceedings of Vor. State University Series: Physics- Mathematics 1, 99-114, (2003).

Golubitsky M., Schaeffer D. G. Singularities and Groups in Bifurcation Theory. Vol I (Applied Mathematical Sciences 51), New York, Springer, (1985).

Hashoosh, A.E. and Jebur, A.M. Improvement of well-posedness for Hemiequilibrium problems, Mathematics in Engineering, Science and Aerospace, 12(1), 5–17, (2021).

Hussain M. A. A., Corner Singularities of Smooth Functions in the Analysis of Bifurcations Balance of the Elastic Beams and Periodic Waves, PhD Thesis, Voronezh University (2005) (in Russian).

Ishibashi Y.J., Phenomenological Theory of Domain Walls, Ferroelectrics, Vol. 98, P.193-205, (1989).

Kadhim, Hussein K., and Abdul Hussain. ”The analysis of bifurcation solutions of the CamassaHolm equation by angular singularities.” Probl. Anal. Issues Anal, 9.1, 66-82, (2020).

Liapounoff A., Sur la stabilite des figures ellipsoıdales d’equilibre d’un liquide anime d’un mouvement de rotation, Annales De La Faculte Des Sciences De Toulouse 6(1), pp. 5116, (1904).

Loginov B. V. Theory of Branching Nonlinear Equations in the conditions of Invariance Group. Tashkent. Fan, (1985).

Marsden, Jerrold and Hughes, Thomas J. R. , Mathematical foundations of elasticity. Dover Publications, Inc. , New York. ISBN 0-486-67865-2, (1983).

Rosen A.H., Abdul Hussain M.A., On bifurcation solutions of nonlinear fourth order differential equation, Asian J Math.Comp Res. 21(3): 145155, (2017).

Sapronov Yu. I. Regular Perturbation of Fredholm Maps and Theorem about odd Field. Works Dept. of Math, Voronezh Univ., 10,82-88, (1973).

Sapronov Yu. I. Finite Dimensional Reduction in the Smooth Extremely Problems. Uspehi math., Science, 51(1), 101-132, (1996).

Schmidt E., Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil, Uber die Auflosung der nichtlin-earen Integralgleichung und die Verzweigung ihrer Losungen, Mathematische Annalen 65, 370-399, (1908).

Shanan A. K., and MA Abdul Hussain. ”Three Modes Bifurcation Solutions of Nonlinear Fourth order Differential Equation.” Journal of Basrah Researches ((Sciences)) 37.4: 291-299, (2011).

Sidorov N., Loginov B., Sinitsyn A. and Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Springer, Vol. 550 (2002), DOI: 10.1007/978-94-017-2122-6.

Thompson J. M. T. and Stewart H. B., Nonlinear Dynamics and Chaos, Chichester, Singapore, J. Wiley and Sons, (1986).

Zainab S.Madhi and Mudhir A. Abdul Hussain, Bifurcation Diagram of W (uj; τ)-function with (p, q) parameters, Iraqi Journal of Science, 63(2), 667-674, (2022).

Published
2025-07-29
Section
Research Articles