Certain properties of generalized and Higher--order $q$-Hermite polynomials: monomiality and applications to their zero distributions
Abstract
In the present paper, we demonstrate 3-variable 2-parameter $q$-Hermite polynomials via generating functions along with their series definitions, $q$-derivatives, operational identities, then we deduce some properties for 2-variable 1-parameter $q$-Hermite polynomials. Also, we present the same mentioned features for multi-index $q$-Hermite polynomials and their associated formalism. Moreover, we utilize the techniques of quasi-monomial extension to explain and implement $q$-multiplicative and $q$-derivative operators for $q$-Hermite polynomials in three variables and multi-index $q$-Hermite polynomials. Finally, we present applications that can be derived using these polynomials, where the graphs of the zero functions and the meshes are displayed.
Downloads
References
N. Alam, W.A. Khan, C. Kızılate¸s, C.S. Ryoo., Two-Variable q-General-Appell Polynomials Within the Context of the Monomiality Principle. Mathematics., 13(5), 735, (2025).
G. E. Andrews, R. Askey, R. Roy., Special Functions. Encyclopedia Mathematics and its Applications. Cambridge University Press: Cambridge, 71 (1999).
P. Appell, J.K. De Feriet., Fonctions hypergeometriques et hyperspheriques: polynomes d’Hermite. Gauthier-villars, Paris, (1926).
J. Cao, N. Raza, M. Fadel., The 2-variable q-Laguerre polynomials from the context of quasi-monomiality. J. Math. Anal. Appl., 535, 128126, (2024).
C. Cesarano, G. M. Cennamo, L. Placidi., Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation. WSEAS Trans. Math. 13, 595−602, (2014)
C. Cesarano, Y. Quintana, W. Ramırez. Degenerate versions of hypergeometric Bernoulli-Euler polynomials. Lobachevskii J. Math. 45(8), 3508–3520, (2024).
C. Cesarano, Y. Quintana, W. Ramırez. A Survey on Orthogonal Polynomials from a Monomiality Principle Point of View. Encyclopedia. 4, 1355–1366, (2024).
G. Dattoli. Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced Special Functions and Applications Melfi, 1999), 147−164, Proc. Melfi Sch. Adv. Top. Math. Phys., 1, Aracne, Rome (2000)
G. Dattoli, A. Torre, S. Lorenzutta, G. Maino, G. Chiccoli., Multivariable Hermite polynomials and phase-space dynamics. In: Proc. 3rd Internat. Workshop on Squeezed States and Uncertainty Relations, U.B.C., Baltimore, Maryland- USA, (1993).
G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre., Theory of generalized Hermite polynomials. Comput. Math. Appl., 28, 71−83, (1994).
G. Dattoli, A. Torre, M. Carpanese., Operational rules and arbitrary order Hermite generating functions. J. Math. Anal. Appl., 227, 98−111, (1998).
M. Fadel., A study of certain q-special functions usingclassical and operational techniques. (Doctoral thesis) Aligarh Muslim University, (2022).
M. Fadel, W. Ramırez, C. Cesarano, S. Dıaz., q-Legendre based Gould–Hopper polynomials and q-operational methods. Ann Univ Ferrara, 71, 1–32, (2025).
M. Fadel, W. Ramırez, C.Cesarano, S. Dıaz., The 2-variable truncated Tricomi functions. Dolomites Research Notes on Approximation, 18(1), 49–45, (2025).
M. Fadel, N. Raza, W.-S. Du., On q-Hermite Polynomials with Three Variables: Recurrence Relations, q-Differential Equations, Summation and Operational Formulas. Symmetry. 16, (2024).
R. Florenini, L. Vinet., Quantum algebras and q-special functions. Annals of Phys., 221, 53−70, (1993).
G. Gasper, M. Rahman., Basic Hypergeometric Series. In Encyclopedia of Mathematics and its Applications. 2nd ed.; Cambridge University Press: Cambridge, 96, (2004).
F. H. Jackson., on q-functions and a certain difference operator. Earth and Environ. Sci. Trans. Roy. Soc. Edin. 46, (1909).
D. O. Jackson, T. Fukuda, O. Dunn, E. Majors., On q-definite integrals. Quart. J. Pure Appl. Math., 41, 193−203, (1910).
R. Khan, S. Khan., Operational calculus associated with certain families of generating functions. Commun. Korean Math. Soc., 30, 429−438, (2015).
S. Khan, R. Khan., Lie-theoretic generating relations involving multi-variable Hermite-Tricomi functions. Integral Transforms Spec. Funct., 20(2009).
Y.S. Kim, M.E. Noz., Phase-Space Picture of Quantum Mechanics. World Publ. Co., Singapore, (1991).
W. Ramırez, C. Kızılate¸s, D. Bedoya, C. Cesarano, C. S. Ryoo., On certain properties of three parametric kinds of Apostol–type unified Bernoulli–Euler polynomials. AIMS Math., 10, 137–158, (2025).
N. Raza, M. Fadel, C.Cesarano., On 2-variable q-Legendre polynomials: the view point of the q-operational technique. Carpathian Math. Publ, 117-141, 17(1) (2024).
N. Raza, M. Fadel, K.S. Nisar, M. Zakarya. On 2-variable q-Hermite polynomials. Aims Math., 8(2021).
J.F. Steffensen., The poweroid, an extension of the mathematical notion of power. Acta Math., 73, 333−366, (1941).
G. Torres, J.H. Federick., Quantum mechanics in phase-space: New approach to correspondence principle. J. Chem. Phys., 93, 8862−8874, (1990).
S. A. Wani, M. Riyasat, S. Khan, W. Ramırez., Certain advancements in multi-dimensional q-Hermite polynomials. Rep. Math. Phys., 64(2024).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).