Certain properties and numerical applications of generalized hybrid special polynomials associated with Hermite polynomials

  • Shahid Ahmad Wani
  • Taghreed Alqurashi
  • Juan Hernández Universidad Autónima de Santo Domingo
  • William Ramírez
  • Jesús David Berrío Valbuena

Abstract

This paper introduces a novel class of generalized Hermite-based Apostol-type Frobenius-Euler polynomials and numbers of order $\nu$ and level $\alpha$. We establish fundamental identities and properties by employing generating function techniques, including summation formulas, differential and integral relations, and addition theorems. Furthermore, we investigate their connections with Stirling numbers of the second kind and various other polynomial families. Additionally, we derive a corresponding differential equation and a recurrence relation for these newly defined polynomials. To visualize their behaviour, we utilize Maple to compute numerical values and illustrate the distribution of their zeros through surface plots.

Downloads

Download data is not yet available.

References

M. Acikgoz, S. Araci, U. Duran, Some (p, q)-analogues of Apostol–type numbers and polynomials, Acta Commentat. Univ. Tartuensis Math., 23 (2019), 37–50.

M. Acikgoz, S. Araci, On the generating function for Bernstein polynomials, AIP Conf. Proc., 1281 (2010), 1141–1143.

P. Appell, J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d’ Hermite, GauthierVillars, Paris, 1926.

C. Cesarano, W. Ramırez, S. Dıaz, New results for degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, WSEAS Trans. Math., 21 (2022), 604–608.

C. Cesarano, B. Germano, P. E. Ricci, Laguerre-type Bessel functions, Integr. Transf. Spec. Funct., 16 (2005), 315–322.

C. Cesarano, W. Ramırez, Some new classes of degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363.

C. Cesarano, W. Ramırez, S. Khan, A new class of degenerate Apostol–type Hermite polynomials and applications, Dolomites Res. Notes Approx., 15 (2022), 1–10.

C. Cesarano, Y. Quintana, W. Ramırez, Degenerate versions of hypergeometric Bernoulli–Euler polynomials, Lobachevskii J. Math., 45 (2024), 3509–3521.

Cesarano C. Generalized Chebyshev polynomials. Hacettepe Journal of Mathematics and Statistics. 2014; 43(5), (2014) 731-40.

G Dattoli, C Cesarano. On a new family of Hermite polynomials associated to parabolic cylinder functions, Applied Mathematics and Computation, 141(1), (2003) 143–149

Clemente Cesarano. Generalizations on Humbert polynomials and functions. Cogent Mathematics, (2017) 4(1).

B. Kurt, Some relationships between the generalized Apostol–Bernoulli and Apostol–Euler polynomials, Turk. J. Anal. Number Theory, 1 (2013), 54–58.

W. Ramırez, C. Kızılate¸s, D. Bedoya, C. Cesarano, C. S. Ryoo, On certain properties of three parametric kinds of Apostol–type unified Bernoulli–Euler polynomials, AIMS Math., 10 (2025), 137–158.

H. M. Srivastava, J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier, 2012.

H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press, 1984.

S. A. Wani, K. S. Nisar, Quasi-monomiality and convergence theorem for the Boas–Buck–Sheffer polynomials, AIMS Math., 5 (2020), 4432–4443.

B. Yasar, M. A. Ozarslan, Frobenius–Euler and Frobenius–Genocchi polynomials and their differential equations, New Trends Math. Sci., 3 (2015), 172–180.

Published
2025-07-13
Section
Research Articles