UNVEILING CESÀRO SUMMABILITY UNDER NEUTROSOPHIC 2-NORMS

  • Nesar Hossain
  • B.C. Tripathy
  • Ayhan Esi Malatya Turgut Ozal University

Abstract

This paper introduces the concepts of Cesàro summability within the framework of neutrosophic 2-normed spaces (N2-NS). We establish that Cesàro summability does not necessarily imply ordinary convergence with regard to neutrosophic 2-norm, providing a concrete example to illustrate this distinction. In this connection, we prove necessary and sufficient condition for the sequences in N2-NS that their Cesàro summability guarantees ordinary convergence.

Downloads

Download data is not yet available.

Author Biography

Ayhan Esi, Malatya Turgut Ozal University

Mathematics

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[2] A. L. Fradkov, R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Control,
29(1) (2005), 33-56.
[3] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
[4] L. Hong, J. Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer.
Simul. 11(1) (2006), 1-12.
[5] E. P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper I: basic analytical and algebraic
properties, Fuzzy Sets and Systems, 143 (2004), 5-26.
[6] M. Kiri¸sci, N. ¸Sim¸sek, Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), 1059-
1073.
[7] Ö. Ki¸si, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst. 41(2) (2021),
2581-2590.
[8] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in
neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 241-252.
[9] S. Murtaza, A. Sharma and V. Kumar, Neutrosophic 2-normed spaces and generalized summability, Neu-
trosophic Sets Syst. 55(1) (2023), Article 25.
[10] B. Schweizer and A. Sklar, Statistical metric spaces, Paci…c J. Math. 10(1) (1960), 313-334.
[11] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math.
24 (2005), 287âe“297.
[12] R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27(2) (2006),
331-344.
[13] A. ¸Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J.
Math. 11(5) (2007), 1477-1484.
[14] O. Talo, F. Ba¸sar, Necessary and su¢ cient Tauberian conditions for the Ar method of summability, Math.
J. Okayama Univ. 60 (2018), 209-219.
[15] L. A. Zadeh, Fuzzy sets, Inform. control, 8 (1965), 338-353.
Published
2025-08-13
Section
Articles