UNVEILING CESÀRO SUMMABILITY UNDER NEUTROSOPHIC 2-NORMS
Abstract
This paper introduces the concepts of Cesàro summability within the framework of neutrosophic 2-normed spaces (N2-NS). We establish that Cesàro summability does not necessarily imply ordinary convergence with regard to neutrosophic 2-norm, providing a concrete example to illustrate this distinction. In this connection, we prove necessary and sufficient condition for the sequences in N2-NS that their Cesàro summability guarantees ordinary convergence.
Downloads
References
[2] A. L. Fradkov, R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Control,
29(1) (2005), 33-56.
[3] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
[4] L. Hong, J. Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer.
Simul. 11(1) (2006), 1-12.
[5] E. P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper I: basic analytical and algebraic
properties, Fuzzy Sets and Systems, 143 (2004), 5-26.
[6] M. Kiri¸sci, N. ¸Sim¸sek, Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), 1059-
1073.
[7] Ö. Ki¸si, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst. 41(2) (2021),
2581-2590.
[8] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in
neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 241-252.
[9] S. Murtaza, A. Sharma and V. Kumar, Neutrosophic 2-normed spaces and generalized summability, Neu-
trosophic Sets Syst. 55(1) (2023), Article 25.
[10] B. Schweizer and A. Sklar, Statistical metric spaces, Paci c J. Math. 10(1) (1960), 313-334.
[11] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math.
24 (2005), 287âe297.
[12] R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27(2) (2006),
331-344.
[13] A. ¸Sahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J.
Math. 11(5) (2007), 1477-1484.
[14] O. Talo, F. Ba¸sar, Necessary and su¢ cient Tauberian conditions for the Ar method of summability, Math.
J. Okayama Univ. 60 (2018), 209-219.
[15] L. A. Zadeh, Fuzzy sets, Inform. control, 8 (1965), 338-353.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).