Fuzzy structures to quadruple coincidence points in Fréchet spaces
Resumo
Within the framework of fuzzy Fréchet spaces (FFS), we have derived results on quadruple coincidence points for commuting mappings, notably without requiring a partially ordered set. Our findings are complemented by compelling examples and new perspectives that extend prior studies. Additionally, we explored an application focused on establishing unique solutions for the Lipschitzian quadruple system.
Downloads
Referências
S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta mathematicae, 3(1), 133-181,(1922).https://eudml.org/doc/213289.
L. A. Zadeh, Fuzzy sets, Information and control, 8(3), 338-353,(1965). https://doi.org/10.1016/S0019-9958(65)90241-X.
A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy sets and systems, 12(2), 143-154, (1984). https://www.sciencedirect.com/science/article/pii/0165011484900344.
4. I. Sadeqi, and F. K. Solaty, Fuzzy Seminormed Linear Space, In First Joint Congress on Fuzzy and Intelligent Systems, Ferdowsi University of Mashhad, Iran : 29-31, (2007). https://en.civilica.com/l/3784/.
A. G. Jasim, and Z. D. Al-Nafie, Fuzzy Frechet Manifold, In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012064). IOP Publishing, (2021, March). https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012064.
R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan, Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87(1), 109-116, (2008). https://doi.org/10.1080/00036810701556151.
J. J. Nieto, and R. Rodrıguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(3), 223-239, (2005). https://link.springer.com/article/10.1007/s11083-005-9018-5.
T. G. Bhaskar, and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear analysis: theory, methods , applications, 65(7), 1379-1393,(2006). https://doi.org/10.1016/j.na.2005.10.017.
V. Lakshmikantham, and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 70(12), 4341-4349, (2009). https://doi.org/10.1016/j.na.2008.09.020.
M. E. Gordji, H.Baghani, and Y. J. Cho, Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces, Mathematical and Computer Modelling, 54(9-10), 1897-1906, (2011). https://doi.org/10.1016/j.mcm.2011.04.014.
A. G., Jasim and Z. D. Al-Nafie, Some fixed point theorems in fuzzy Frechet manifold, In AIP Conference Proceedings (Vol. 2398, No. 1). AIP Publishing, (2022, October). https://doi.org/10.1063/5.0095582.
A. G. Jasim, A. A. Sangoor, A. S. Mohammed, T. H. Dahess, and A. H. Kamil, Common fixed point theorem in fuzzy Frechet space, Journal of Interdisciplinary Mathematics, 27(4), 843-847, (2024). https://doi.org/10.47974/JIM-1881.
E. A.Huzam, and et.al.Existence and Uniqueness of Solutions to Hemi Equilibrium Problem with Application.Journal of Advanced Research in Dynamical and Control Systems, 11(1), 1754-1758(2019).
J. H. Eidi, E. M. Hameed, and J. R. Kider, Fixed Point Theorems with its Applications in Fuzzy Complete Convex Fuzzy Metric Spaces, International Journal of Neutrosophic Science (IJNS), 25(3), (2025). https://doi.org/10.54216/IJNS.250306.
A. G. Jasim, I. Harbi and A. S. Mohammed, On coupled fixed point theorem in partially fuzzy Frechet space, Journal of Interdisciplinary Mathematics, 28:3-A, 787-793, (2025). DOI: 10.47974/JIM-1974.
O. Hadzic, and E. Pap, Fixed point theory in probabilistic metric spaces, Springer Science and Business Media, Vol. 536, (2013). https://link.springer.com/book/10.1007/978-94-017-1560-7.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).