Generalized S-function and its application to statistical distribution
Abstract
In this paper, we present p+q+m and p+q+2m parametric S-functions, exploring the relationships between these two types of functions. We derive their fundamental properties, including generating functions, recurrence relations, differential formulas and integral representations. From these results, we establish several notable
corollaries. Furthermore, we present a distribution function involving the S-function and compute the Laplace transform of its density function. Additionally, we explore the connections between the S-function and other significant transcendental functions.
Downloads
References
V. Akhmedova and E. Akhmedov, Selected Special Functions for Fundamental Physics, Springer-Brief in Physics (Springer, Cham, Switzerland, 2019).
M. Abdalla,Special matrix functions: Characteristics, achievements and future directions, Linear Multiplier Algebra, 68, (2020), 1-28.
I. Sneddon, Special Functions of Mathematical Physics and Chemistry, (Oliver and Boyd, 1956).
E. Rainville, Special Functions, The Macmillan, new York, USA, 1960.
D.S.Sachan, S. Jaloree and J. Choi, Certain recurrence relations of two parametric Mittag-Leffler function and their application in fractional calculus. Fractal Fract. 5, (2021), Article ID 215.
D.S. Sachan, D. Kumar and K.S. nisar, Certain properties associated with generalized M-Series using Hadamard Product, Sahand Commun. Math. Anal. 21(1) (2024), 151-171.
D.S. Sachan and S. Jaloree, Generalized fractional calculus of I-function of two variables, J˜n¯an¯abha, 50 (1) (2020), 164-178.
D.S. Sachan and S. Jaloree, Integral transforms of generalized M-Series, Jour. of Frac. Calc. and Appl., 12 (1) (2021), 213–222.
D.S. Sachan, H. Jalori and S. Jaloree, Fractional calculus of product of M-series and I-function of two variables, J˜n¯an¯abha, 52(1) (2022), 189-202, .
D.S. Sachan, S. Jaloree, K.S. nisar and A. Goyal, Some integrals involving generalized M-Series using Hadamard product, Palest. J. Math., 12(4)(2023), 276-288.
D.S. Sachan, Certain integrals involving multivariable general class of polynomial, Jacobi polynomial and I-function of two variables, Jnanabha, 53(2) (2025), 238-254.
D.S. Sachan and F. Ayant, Finite integrals involving incomplete Aleph-functions, extension of the Mittag-Leffler function and elliptic integral of first species, Jour. of Frac. Calc. and Appl. 14(2) (2023), 1-12.
J. Paneva-Konovska, C.R. Acad. Bulg. Sci. 64, 1089 (2011).
J. Paneva-Konovska, On the multi-index (3m-parametric) Mittag-Leffler function, fractional calculus relations and series convergence, Cent. Eur. J. Phys. 11(10) (2013), 1164-1177.
M.A. Al-Bassam and Y.F. Luchko, On generalized fractional calculus and its application to the solution of integrodifferential equations, J. Fract. Calc., 7, (1995), 69-88.
V.S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118, (2000), 241-259.
R. Desai and A.K. Shukla, Some results on function pRq(α, β; z), J. Math. Anal. Appl. , 448, (2017), 187-197.
M. A. Ozarslan and A. Fernandez, On a five-parameter Mittag-Leffler function and the corresponding bivariate fractional operators, Fractal Fract., 2021,5, 45.
F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, nIST Handbook of Mathematical Functions, Cambridge University Press, new York, 2010.
G.n. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, new York, 1995.
V.S. Kiryakova, Generalized fractional calculus and applications, Boca Raton, CRC press, new York, 1993.
A. K. Alomari and Y. Massoun , numerical solution of time fractional coupled Korteweg–de Vries equation with a Caputo fractional derivative in two parameters. IAEnG International Journal of Computer Science, 50(2) (2023), 1–14.
Y. Massoun, Analytic study of pine wilt disease model with Caputo–Fabrizio fractional derivative. Mathematical Methods in the Applied Sciences, 45(11) (2022), 7072–7080.
Y. Massoun, A. K. Alomari and C. Cesarano, Analytic solution for SIR epidemic model with multi-parameter fractional derivative. Mathematics and Computers in Simulation, 230, (2025), 484–492.
Y. Massoun, C. Cesarano, A. K. Alomari and A. Said, numerical study of fractional Phi-4 equation. AIMS Mathematics, 9(4) (2025), 8630–8640.
H.M. Zayed, On Generalized Bessel-Maitland function, Adv. Difference Equ. 2021, Article ID- 432.
V.B.L. Chaurasia and S.C. Pandey, Computable extensions of generalized fractional kinetic equations in astrophysics, Res. Astron. Astrophys. 10(1) (2010), 22-32.
S.C. Pandey, The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics, Comput. Appl.Math, 37 (3) (2018), 2648-2666.
A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, (Volume II), McGraw Hill, new York, 1953.
Y. Luchko, The four-parametric Wright function of the second kind and its applications in FC. Mathematics, 8 (6) (2020), 970-986, Article ID 970.
T.O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal. 4 (1) (2009), 21-30.
T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math, J. 19, (1971), 7-15.
R. Gorenflo, A.A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin, Germany, 2020.
Djrbashian, M.M. Harmonic Analysis and Boundary Value Problems in the Complex Domain; Birkhauser Verlay: Basel-Boston-Berlin, 1996; OI-65.
M.M. Djrbashian, Integral Transforms and Representations of Functions in the Complex Domain; nauka: Moscow, Russian, 1966.
M.G. Mittag-Leffler, Sur l’integrale de Laplace-Abel. C. R. Acad. Sci. Paris (Ser. II), 136, (1902), 937-939.
M.G. Mittag-Leffler, Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris (Ser. II), 137, (1903), 554-558.
M.G. Mittag-Leffler, Sopra la funzione Eα(x). Rend. Accad. Lincei, 13, (1904), 3-5.
A. Buhl, Series Analytiques, Sommabilite, number 7 in Memorial des Sciences Mathematiques; Gauthier-Villars: Paris, France, 1925.
M.P. Chen, H.M. Srivastava, Orthogonality relations and generating functions for Jacobi polynomials and related hypergeometric functions, Appl. Math. Comput. 68, (1995), 153-188.
H.M. Srivastava and H.L.Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited), John Wiley and Sons, new York, Chichester, Brisbane, Toronto, 1984.
H.M. Srivastava, M. A. Ozarslan and C. Kaano˘glu, Some families of generating functions for a certain class of three variable polynomials, Integral Transforms Spec. Funct. 21, (2010), 885-896.
G.G. Ozbey, G.B. Oznur, Y. Aygar and R. A. Karaman, Some properties of Bessel function in multiplicative calculus, Rend. Circ. Mat. Palermo, II. Ser 74, 42, (2025).
A.M. Mathai and H.J. Haubold, Special Functions for Applied Scientists, Springer, new York (2008).
K.S. nisar, A.F. Eata, M.D. Dhaifallah and J. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016 , 2016, 304.
H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 51.
S. Araci, G. Rahman, A. Ghaffar, Azeema and K.S. nisar, Fractional calculus of extended Mittag-Leffler function and its applications to statistical distribution, Mathematics, 2019, 7, 248.
J. Daiya and J. Ram, k-Generalized Mittag-Leffler statistical distribution. J. Glob. Res. Math. Arch. (JGRMA) 2013, 1, 61–68.
C. Ram, P. Choudhary and K.S. Gehlot, Statistical distribution of k-Mittag-Leffler function. Palest. J. Math. 2014, 3, 269–272.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



