A numerical simulation of fractional order influenza disease model
Abstract
In this work, our purpose is to present the fractional model of the transmission dynamics of influenza virus in the aspect of drug resistance. Here, we construct a numerical algorithm based on the homotopy analysis transformation method to achieve a fractional form solution of the influenza virus transmission dynamics model. The fixed point theory is employed to investigate whether a solution exists, and the uniqueness of the solution of the influenza virus model is also analyzed. The numerical simulation of an influenza disease model is performed to observe the effect of different treatment parameters on the progression of the disease. The findings for the fractional influenza model indicate that the suggested method is quite precise and efficient.
Downloads
References
https://www.who.int/health-topics/influenza-seasonal tab=tab 1
White M. C. and Lowen A. C. , Implications of segment mismatch for influenza A virus evolution, Journal of General Virology, 99, 3–16, (2017).
Handel A., Liao L. E. and Beauchemin C. A. A. , Progress and trends in mathematical modelling of influenza A virus infections, Current Opinion in Systems Biology 12, 30-36, (2018).
Kanyiri C. W., Mark K. and Luboobi L. Mathematical analysis of influenza a dynamics in the emergence of drug resistance, Computational and Mathematical Methods in Medicine, 14, (2018).
Srivastav A. K. and Ghosh M., Analysis of a simple influenza A (H1N1) model with optimal control, World Journal of Modelling and Simulation, 12, 307-319, (2016).
Dangi T. and Jain A., Influenza virus: A brief overview, Proceedings of national academy of sciences Section B, Biological siences, 1, 111-121, (2012).
Hussain T., Ozair M., Okosun K. O., Ishfaq M., Awan A. U. and Aslam A., Dynamics of swine influenza model with optimal control, Advances in Difference Equations, 508 (2019).
Islam R., Biswas M. H. A. and Jamali A. R. M. , Mathematical analysis of epidemiological model of influenza A (H1N1) virus transmission dynamics in Bangladesh perspective, GANIT Journal of Bangladesh Mathematical Sociaty, 37, 39-50, (2017).
Caputo M. and Fabrizio M., A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 2, 73-85, (2015).
Losada J.J., Nieto J., Properties of the new fractional derivative without singular kernel. Progress in Fractional Differentiation and Application 1, 87–92, (2015).
Kumar D., Singh J., Qurashi M. A. and Baleanu D., A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations , 278, (2019).
Khondaker F., Optimal control analysis of influenza epidemic model. Applied Mathematics, 13, 845-857, (2022).
Usman N. H. and Siam F. M., A mathematical model of influenza using SITR model approach. Proceedings of Science and Mathematics, 3, 101-110, (2021).
Baba I. A. and Saad F. T., Global stability analysis of three strains influenza virus model. Far East Journal of Mathematical Sciences, 102, 3259-3271, (2017).
Srivastava H. M., Dubey R. S. and Jain M., A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci. 42, 4570–4583 (2019).
Almutairi D. K., Abdoon M. A., Berir M., Saadeh R., and Qazza A. A Numerical Confirmation of a Fractional SEITR for Influenza Model Efficiency. Applied Mathematics and Information Sciences 17, 741-749, (2023).
Abdoon M. A., Saadeh R., Berir M. , Guma F. E. L. and Ali M., Analysis, modeling and simulation of a fractional-order influenza model. Alexandria Engineering Journal 74, 231-240, (2023).
Dadhich S., Yadav M. P. and Kritika , A fractional-order differential equation model of diabetes mellitus type SEIIT. International Journal of Mathematics for Industry 2450001 (16 pages) (2024).
Alsubaie N. E, Guma F. E. L., Abdoon M. A., Boulehmi K. and Al-kuleab N. Improving Influenza Epidemiological Models under Caputo Fractional-Order Calculus. Symmetry, 16, 929 (2024).
Althubiti S., Sharma S., Goswami P. and Dubey R. S., Fractional SIAQR model with time dependent infection rate. Arab Journal of Basic and Applied Sciences, 30, 307-316 (2023).
Sharma S., Goswami P., Baleanu D. and Dubey R. S., Comprehending the model of omicron variant using fractional derivatives. Applied Mathematics in Science and Engineering 31 (1), 2159027 (2023).
Alazman I., Mishra M. N. , Alkahtani B. S. and Dubey R. S., Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative. Fractal and Fractional,8, 537, (2024).
Hamidanea N., Derradjib L. S. and Aouchal S., Analysis of SIRC model for influenza A with Caputo-Fabrizio derivative. Int. J. Nonlinear Anal. Appl. 13, 1239–1259, (2022).
Sabir Z., Said S. B. and Al-Mdallal Q., A fractional order numerical study for the influenza disease mathematical model. Alexandria Engineering Journal, 65, 615-626, (2022).
Ting Cuia and Peijiang Liu, Fractional transmission analysis of two strains of influenza dynamics. Results in Physics, 40, 105843, (2022).
Singh J., Kumar D. and Baleanu D., On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ., 231, (2018).
Senthamarai R., Balamuralitharan S. and Govindarajan A., Application of homotopy analysis method in SIRS-SI model of malaria disease. Int.J.Pure Appl.Math, 113(12), 239–248, (2017).
Alexander M. E., Bowman C., Moghadas S. M., Summers R. , Gumel A. B. and Sahai B. M., A vaccination model for transmission dynamics of influenza, SIAM Journal on Applied Dynamical Systems, 3, no. 4, 503–524, (2004).
Alazman I., Mishra M. N., Alkahtani B.S. And Goswami P., Computational analysis of rabies and its solution by applying fractional operator, Applied Mathematics in Science and Engineering, 32:1, 2340607, (2024).
Areshi M., Goswami P. and Mishra M.N., Comparative study of blood sugar–insulin model using fractional derivatives, Journal of Taibah University for Science, 18:1, 2339009, (2024).
Mishra M. N. and Aldosari F., Comparative study of tuberculosis infection by using general fractional derivative. AIMS Mathematics, 10(1), 1224-1247, (2025).
Alqahtani A. M. and Mishra M. N., Mathematical analysis of Streptococcus suis infection in pig-human population by Riemann-Liouville fractional operator. Prog. Fract. Differ. Appl, 10(1), 119-135, (2024).
Caputo, M., Linear Models of Dissipation whose Q is almost Frequency Independent – II, Geophys. J. R. Astr. Soc., 13, 529 - 539, (1967).
Mishra M. N. and Aljohani A. F., Mathematical modeling of growth of tumour cells with chemotherapeutic cells by using Yang–Abdel–Cattani fractional derivative operator, Journal of Taibah University for Science, 16:1, 1133-1141, (2022).
Agarwal R., Yadav M. P., Baleanu D., and Purohit S. D., Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 5(2): 1062–1073, (2020) .
Agarwal R., Yadav M. P., Agarwal R. P., Fractional flow equation in fractured aquifer using dual permeability model with non-singular kernel. Arabian Journal of Mathematics, 10: 1–9, (2021) .
Kumar P. and Yadav M. P., Numerical approximations of groundwater flow problem using fractional variational iteration method with fractional derivative of singular and nonsingular kernels International Journal of Mathematics for Industry Vol. 16, Supp. 1 2450008 (15 pages), (2024).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



