On three pairs of Lucas and Fibonacci-type combinatorial $\boldsymbol{p}$-entities
Abstract
This work uses a general integer parameter $p$ to try to generalise $3$-pairs of subsequences of Fibonacci numbers and Lucas numbers. In this study, we focus on constructing $3$-pairs of generalized Lucas and Fibonacci-type combinatorial $p$-entities that satisfy a more general quadratic Diaphantine equation of the kind $x^2-Ny^2= \pm k2$. Separate sections present a variety of Discrete Mathematical features of the combinatorial $p$-entities.
Downloads
References
Burton, D. M., Elementary Number Theory, McGraw-Hill, New York, (1998).
P. Dhanya, K. M. Nagaraja and P. Siva Kota Reddy, A Note on D’Ocagne’s Identity on Generalized Fibonacci and Lucas numbers, Palest. J. Math., 10(2) (2021), 751–755.
Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete mathematics: a foundation for computer science, Second Edition, Addison-Wesley Publishing Group, Amsterdam, (1994).
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, Oxford at the Clarendon Press, (1979).
Honnegowda C. K., Studies on Sum Aspects of Combinatorial Number Theory, Ph.D. Thesis, University of Mysore, Mysore, (2018).
Honsberger, R., Mathematical gems III, Dolciani Math. Expo., Volume 9, The Mathematical Association of America, Washington, DC, (1985).
Koshy, T., Fibonacci and Lucas numbers with applications, Volume I, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York, Wiley, (2001).
Koshy, T., Pell and Pell-Lucas numbers with applications, Springer, New York, (2014).
Lam–Estrada, P., Maldonado–Ram´ırez, M. R., L´opez–Bonilla, J. L., Jarqu´ın–Z´arate, F., Rajendra, R. and Siva Kota Reddy, P., The Sequences of Fibonacci and Lucas for Real Quadratic Number Fields, Bol. Soc. Parana. Mat. (3), 43, Article Id: 68136, 15 Pages, (2025).
Niven, I., Zuckerman, H. S. and Montgomery, H. L., An Introduction to the Theory of Numbers, 5th Edition, John Wiley & Sons, Inc., (1991).
Rangarajan, R., Mukund, R. and Honnegowda, C. K. and Mayura, R., On combinatorial identities of Pell-Chebyshev twin number pairs, Palest. J. Math., 11(2), 308–317, (2022).
Rangaswamy, Studies on Brahmagupta polynomials and continued fractions with some interconnections, Ph.D. Thesis, University of Mysore, Mysore, (2007).
Robbins, N., Beginning number theory, Dubuque, IA: Wm. C. Brown Publishers, (1993).
Suryanarayan, E. R., The Brahmagupta Polynomials, The Fibonacci Quarterly, 34, 30–39, (1996).
Vajda S., Fibonacci and Lucas Numbers and Golden Section: Theory and Applications , Ellis-Horwood, New York, (1989).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).