On the existence and uniqueness solutions for a fractional Benjamin-Ono equation for conformable fractional derivative
Abstract
In this paper, we discuss the existence and uniqueness solution of a conformable fractional
derivative for the fractional Benjamin-Ono equation (FBOs), using the Sine-Gordon expansion method. Now, we get few exact solution to the fractional Benjamin-Ono equation and the graphical representation of the results. The outcomes demonstrate how the current process is practically effective.
Downloads
References
Ajay K, Raj Shekhar P. On dynamical behavior for approximate solutions sustained by nonlinear fractional damped Burger and Sharma-Tasso-Olver equation, International Journal of Modern Physics B. 2350228, 1-20, (2023).
A. SR, R. Saadati, J. Vahidi, J. F. G´omez-Aguilar, The exact solutions of conformable time-fractional modified nonlinear Schrodinger equation by first integral method and functional variable method, Opt Quantum Electron,54(4):1–17, (2022).
A. Ciancio, G. Yel, A. Kumar, H. M. Baskonus, E. Ilhan, On the complex mixed dark-bright wave distributions to some conformable nonlinear integrable models, Fractals, 30(1),2240018, (2022).
A.Jhangeer, M. Muddassar, M. Kousar, B. Infal, Multistability and Dynamics of Fractional Regularized Long Wave equation with Conformable Fractional Derivatives, Ain Shams Engineering Journal 12, 2153–2169, (2021).
A. Kumar, P. Fartyal, Dynamical behavior for the approximate solutions and different wave profiles nonlinear fractional generalised pochhammer-chree equation in mathematical physics Opt Quant Electron 55, 1128 (2023).
A. Yokus, H. Durur, D.Kaya , H. Ahmad , T. A. Nofal A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65–70, (2014).
A. Prakash, A. Kumar, H. M. Baskonus , A.Kumar, Numerical analysis of nonlinear fractional Klein-Fock-Gordon equation arising in quantum field theory via Caputo-Fabrizio fractional operator, Mathematical Sciences, 1-19, (2021).
B. Karaman, The use of the improved-F expansion method for the time-fractional Benjamin-Ono equation, RACSAM, 115(3), 1-7, (2021).
B. Sagar, S. S. Ray, A localized meshfree technique for solving fractional Benjamin–Ono equation describing long internal waves in deeply stratified fluids, Communications in Nonlinear Science and Numerical Simulation, 107287,(2023). https://doi.org/10.1016/j.cnsns.2023.107287.
B.S. Kala, M. S. Rawat, N. Rawat, A. Kumar, Numerical analysis of non-Darcy MHD flow of a Carreau fluid over an exponentially stretching/shrinking sheet in a porous medium, Int J Sci Res Math Stat Sci, 6(2),295-303, (2019).
E. Pindza, E. Mare, Sinc collocation method for solving the Benjamin-Ono equation, J. Comput. Methods Phys., 2014, 392962, (2014).
G. Fonseca, F. Linares, G. Ponce, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces, Ann. I. H. Poincar´e – AN 30, 763-790, (2013).
H.M.Baskonus, A.Kumar, W. Gao, Deeper investigations of the (4+1)-dimensional Fokas and (2+1)-dimensional Breaking soliton equations, International Journal of Modern Physics B, 2050152 1-16, (2020).
J.L.G.Guirao, H.M.Baskonus, A.Kumar, M.S.Rawat, G.Yel, Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation, Symmetry. 12(1) 1-10, (2020).
J.G. Liu, M.S. Osman, A.M. Wazwaz, A variety of nonautonomous complex wave solutions for the (2+ 1)- dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers, Optik 180, 917–923, (2019).
J.L.G.Guirao, H.M.Baskonus, A.Kumar, Regarding New Wave Patterns of the Newly Extended Nonlinear (2+1)- Dimensional Boussinesq Equation with Fourth Order, Mathematics , 8(341) 1-9, (2020).
J. Satsuma, Y. Ishimori, Periodic wave and rational soliton solutions of the Benjamin-Ono equation, J. Phys. Soc. Japan, 46(2), 681-687, (1979).
K. K. Ali, On the study of the conformal time-fractional generalized q-deformed sinh-Gordon equation, Computation and Modeling for Fractional Order Systems, 89-102, (2024).
K. Roshdi , MA. Horani, A. Yousef , M.Sababheh, A new definition of fractional derivative, J Comput Appl Math,264:65–70, (2014).
L.Yan, G. Yel, A. Kumar, H. M. Baskonus, W. Gao, Newly developed analytical scheme and its applications to the some nonlinear partial differential equations with the conformable derivative, Fractal and Fractional, 5(4), 238, (2021).
O. Tasbozan , New analytical solutions for time fractional Benjamin–Ono equation arising internal waves in deep water, China Ocean Eng., 33(5),593-600, (2019).
P. Isaza, F. Linares, G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, Journal of Functional Analysis, 270, 976-1000, (2016).
R. Sun, Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds, Commun. Math. Phys., 383(2), 1051-1092, (2021).
S.M. Hashemi, et al.: On Fractional KdV-Burgers and Potential KdV Equations Existence and Uniqueness Results, Thermal Science: 23(6), S2107-S2117, (2019),
H.K. Jassim, H. Ahmad, A. Shamaoon, C. Cesarano, An efficient hybrid technique for the solution of fractional-order partial differential equations, Carpathian Math. Publ. 13, 790-804, (2021).
Farah M. Al-Askar , Clemente Cesarano, Wael W. Mohammed , Multiplicative Brownian Motion Stabilizes the Exact Stochastic Solutions of the Davey–Stewartson Equations, Symmetry, 14, 2176, (2022).
Osama Moaaz, Clemente Cesarano, Ali Muhib , Some new oscillation results for fourth-order neutral differential equations, European Journal of Pure and Applied Mathematics, 13(2), 185-199, (2020).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).