Generalized Hermite-Hadamard type inequalities for MT-Non-convex functions via fractional integrals
Abstract
In this paper, we considered the class of \textit{MT-Non-convex functions}. We also established some new generalized fractional integral inequalities of Hermite-Hadamard type for \textit{MT-Non-convex} functions and to explore some new Hermite-Hadamard type inequalities in a form of generalized Riemann-Liouville fractional integrals as well as classical integrals, respectively. These newly established inequalities generalize some known results.
Downloads
References
Noor, M. A., Awan, M. U., Noor, K. I., and Postolache, M. (2016). Some integral inequalities for p-convex functions. Filomat, 30(9), 2435–2444.
Zhang, K. S., and Wan, J. P. (2007). p-convex functions and their properties. Pure Appl. Math., 23(1), 130–133.
Noor, M. A., Noor, K. I., Awan, M. U., and Costache, S. (2015). Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77(1), 5–16.
Liu, W. (2015). Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Mathematical Notes, 16(1), 249–256.
Iscan, I. (2016). Ostrowski type inequalities for p-convex functions. New Trends in Mathematical Sciences, 4(3), 140.
Mohammed, P. O. (2018). Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates. Journal of King Saud University-Science, 30(2), 258–262.
Katugampola, U. N. (2011). New approach to a generalized fractional integral. Applied Mathematics and Computation, 218(3), 860–865.
Thatsatian, A., Ntouyas, S. K., and Tariboon, J. (2019). Some Ostrowski type inequalities for p-convex functions via generalized fractional integrals. J. Math. Inequal., 13(2), 467–478.
Liu, W., Wen, W., and Park, J. (2016). Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl., 9(3), 766–777.
Park, J. (2015). Some Hermite-Hadamard type inequalities for MT-convex functions via classical and Riemann-Liouville fractional integrals. Appl. Math. Sci., 9(101), 5011–5025.
Iscan, I. (2016). Hermite-Hadamard type inequalities for p-convex functions. International Journal of Analysis and Applications, 11(2), 137–145.
Kunt, M., and Iscan, I. (2017). Hermite-Hadamard type inequalities for p-convex functions via fractional integrals. MJPAA, 3, 22–35.
Han, J., Mohammed, P. O., and Zeng, H. (2020). Generalized fractional integral inequalities of Hermite-Hadamard type for a convex function. Open Mathematics, 18(1), 794–806.
Chen, H., and Katugampola, U. N. (2017). Hermite-Hadamard and Hermite-Hadamard-Fej´er type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications, 446(2), 1274–1291.
Agarwal, P., Jleli, M., and Tomar, M. (2017). Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. Journal of Inequalities and Applications, 2017(1), 1–10.
Yang, Y., Saleem, M. S., Ghafoor, M., and Qureshi, M. I. (2020). Fractional integral inequalities of Hermite-Hadamard type for differentiable generalized-convex functions. Journal of Mathematics, 2020.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



