Study of nonlinear boundary value hybrid fractional integro-differential equations with infinite delay

  • Youssef Edabab Laboratory LMACS, FST of Beni-Mellal, Sultan Moulay Slimane University, Morocco
  • Samira Zerbib Laboratory of Applied Mathematic & Scientific Calculus, Sultan Moulay Slimane University, Beni Mellal
  • Ahmed Kajouni
  • Khalid Hilal

Abstract

In this study, we establish sufficient conditions for the existence of solutions to a nonlinear boundary value hybrid fractional integro-differential equation with infinite delay, incorporating the generalized fractional proportional Caputo derivative of order 1 < θ < 2. To analyze the existence of solutions for the given problem, we utilize the theory of infinite delay along with Dhage’s fixed point theorem. Finally, we present two illustrative examples to emphasize the key findings.

Downloads

Download data is not yet available.

References

S. Abbas, M. Benchohra, and G. M. N’Guerekata, Topics in fractional differential equations. Springer Science & Business Media 27 (2012).

S. Abdelkrim, M. Benchohra, J. E. Lazreg, and J. Henderson, On k-Generalized ψ-Hilfer Boundary Value Problems with Retardation and Anticipation. Advances in the Theory of Nonlinear Analysis and its Application. 6 173-190 (2022).

M. Alghanmi and S. Alqurayqiri, Existence results for fractional neutral functional differential equations with infinite delay and nonlocal boundary conditions. Advances in Continuous and Discrete Models. 2023 (2023).

R. Almeida, D.Tavares, D.F.M.Torres, The Variable-Order Fractional Calculus of Variations. Springer(2018).

C. Chen, Q. Dong, Existence and Hyers–Ulam stability for a multi-term fractional differential equation with infinite delay. Mathematics. 10.7 (2022) 1013.

S.A. David, J.L. Linares, E.M.D.J.A. Pallone, Fractional order calculus: historical apologia, basic concepts and some applications, Rev. Bras. Ensino Fis. 33 4302-4302 (2011).

C. Derbazi, H. Hammouche, A. Salim, and M. Benchohra, Measure of noncompactness and fractional hybrid differential equations with hybrid conditions. Differ. Equ. Appl. 14 145-161 (2022).

B. Dhage, On a fixed point theorem in Banach algebras with applications. Applied Mathematics Letters. 18 273-280 (2005).

L. Euler, De progressionibus transcentibus sev quarum termini algebraice dari nequeunt. comment. Acad.Sci.Imperialis Petropolitanae. 5, (1738) 36–57.

R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Vienna, 1997.

J. K. Hale, Retarded equations with infinite delays. Functional Differential Equations and Approximation of Fixed Points: Proceedings, Bonn, July 1978, Berlin, Heidelberg: Springer Berlin Heidelberg, 730 157-193 (2006).

K. Hilal and A. Kajouni, Boundary value problems for hybrid differential equations with fractional order. Advances in Difference Equations. 2015 1-19 (2015).

F. Jarad, T. Abdeljawad, S. Rashid, and Z. Hammouch, On more general forms of proportional fractional operators. Open Mathematics. 18 167-176 (2020).

F. Jarad, M. Alqudah, and T. Abdeljawad, More properties of the proportional fractional integrals and derivatives of a function with respect to another function. Advances in Difference Equations. 2020 1-16 (2020).

K.S. Miller, B.Ross, An Introduction To The Fractional Calculus And Fractional Differential Equations. John Wiley and Sons.Inc.(1993).

A. Salim, S. Krim, J. E. Lazreg, and M. Benchohra, A Study on Some Conformable Fractional Implicit Hybrid Differential Equations with Delay. Kragujevac J. Math. 50 439–455 (2026).

K. Salim, et al, On implicit impulsive conformable fractional differential equations with infinite delay in b-metric spaces. Rendiconti del Circolo Matematico di Palermo Series. 2 72.4 (2023) 2579-2592.

V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media. (2011).

S. Zerbib, N. Chefnaj, K. Hilal, and A. Kajouni, Study of p-Laplacian hybrid fractional differential equations involving the generalized Caputo proportional fractional derivative. Computational Methods for Differential Equations, (2024).

ZERBIB, S., HILAL, K., KAJOUNI, A.: GENERALIZED CAPUTO PROPORTIONAL BOUNDARY VALUE LANGEVIN FRACTIONAL DIFFERENTIAL EQUATIONS VIA KURATOWSKI MEASURE OF NONCOMPACTNESS. Kragujev. J. Math. 50(7), 1035–1047 (2026).

S. Zerbib, K. Hilal, A. Kajouni, Nonlocal Caputo generalized proportional fractional integro-differential systems: an existence study. Journal of Mathematical Modeling. 375-391 (2025).

S. Zerbib, K. Hilal, A. Kajouni, On the Langevin fractional boundary value integro-differential equations involving ψ-Caputo derivative with two distinct variable-orders. Comput. Appl. Math. 44(5), 212 (2025).

S. Zerbib, K. Hilal, A. Kajouni, Some new existence results on the hybrid fractional differential equation with variable order derivative, Results Nonlinear Anal. 6 34-48 (2023).

K. Zhao, Y. Ma, Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integrodifferential equation with infinite delay. Fractal and Fractional, 5(2), 52 (2021).

Published
2025-08-10
Section
Research Articles