Mathematical analysis of thermal management in photovoltaic modules

  • ABBES KADYRI CHOUAIB DOUKKALI UNIVERSITY
  • EL MAHDI ASSAID
  • KHALID KANDOUSSI
  • OTMANE SOUHAR

Abstract

Thermal management is a key factor in optimizing the performance and longevity of photovoltaic  (PV) systems. This work presents a two-dimensional thermal model based on fully explicit finite difference  methods to simulate heat transfer across the layered structure of PV modules. The model incorporates conduction, convection, and radiation, along with realistic boundary conditions and material properties. Validation  against experimental data under varying irradiance confirms its strong predictive capabilities. Multiple statistical indicators demonstrate high accuracy and consistency between modeled and observed temperatures.  The results highlight critical thermal gradients and potential hotspots that affect PV efficiency. This modeling framework offers valuable insights for improving panel design and implementing efficient thermal control  strategies. It also contributes to the theoretical understanding of heat transfer in PV systems, supporting  future advancements in high-efficiency, climate-resilient solar technologies. 

Downloads

Download data is not yet available.

References

Ahliouati, M., El Otmani, R., & Kandoussi, K. (2023, May). Performance Analysis of Monocrystalline PV Module Under the Effect of Moroccan Arid Climatic Conditions. In 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-6). IEEE.

Armstrong S., Hurley W.G., A thermal model for photovoltaic panels under varying atmospheric conditions, Appl. Therm. Eng. 30 (2010), 1488–1495.

Barroso, JC Sanchez, et al. ”A computational analysis of coupled thermal and electrical behavior of PV panels.” Solar Energy Materials and Solar Cells 148 (2016): 73-86.

Bergman, Theodore L. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.

Chouhan, Aditya, TYAGI, V. V., et ANAND, Sanjeev. Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy conversion and management, (2018), vol. 163, p. 314-354.

El Achouby, H., M. Zaimi, A. Ibral, E.M. Assaid,: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module, Energy conversion and management 177, (2018) 258-271.

ELAVARASAN, Rajvikram Madurai, MUDGAL, Vijay, SELVAMANOHAR, Leoponraj, et al. Pathways toward highefficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review. Energy Conversion and Management, (2022), vol. 255, p. 115278.

Farhane, Mehdi, Omar Alehyane, and Otmane Souhar. ”Three-dimensional analytical solution of the advection-diffusion equation for air pollution dispersion.” The ANZIAM Journal 64.1 (2022): 40-53.

Hanna, S. R., D. G. Strimaitis, and J. C. Chang. ”Hazard response modeling uncertainty (a quantitative method). Volume 1. User’s Guide for Software for Evaluating Hazardous Gas Dispersion Models.” Sigma Research Corporation, Westford (1991).

Hong, D., Ma, J., Wang, K., Man, K. L., Wen, H., & Wong, P. Real-Time Power Prediction for Bifacial PV Systems in Varied Shading Conditions: A Circuit-LSTM Approach Within a Digital Twin Framework. IEEE Journal of Photovoltaics, (2024), vol. 14, p. 652 - 660.

Kadyri A., Kandoussi K., Souhar O., An approach on mathematical modeling of PV module with sensitivity analysis: a case study. Journal of Computational Electronics, (2022), 1365-1372.

Khanna, V, Das, B., Bisht, D., Vandana and Singh, P.: “A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm,” Renewable Energy, vol. 78, pp. 105-113 (2015)

Ko, J., Kim, K., Sohn, J. W., Jang, H., Lee, H. S., Kim, D., & Kang, Y. Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules. Energies, 16(11), 4327 (2023).

Kudish, Avraham I., et al. ”Simulation study of a solar collector with a selectively coated polymeric double walled absorber plate.” Energy Conversion and Management 43.5 (2002): 651-671.

Lee Y., Tay A.A.O., Finite element thermal analysis of a solar photovoltaic module, Energy Procedia 15 (2012), 413–420.

Lewis, R. W., Nithiarasu, P., & Seetharamu, K. N. (2004). Fundamentals of the finite element method for heat and fluid flow. John Wiley & Sons.

Liu, J., and Shimoyama, K. Determination of Turbulent Prandtl Number for Thermal Fluid Dynamics Simulation of HVAC Unit by Data Assimilation. ASME. J. Thermal Sci. Eng. Appl, (2024), p. 1-10.

Naqvi, S.A.R., Kumar, L., Harijan, K., Sleiti, A.K.: “Performance investigation of solar photovoltaic panels using mist nozzles cooling system,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 2299–2317 (2024). https://doi.org/10.1080/15567036.2024.2305302

Seyedmahmoudian, M., Mekhilef, S., Rahmani,R., Yusof, R. and Renani, E.T.: “Analytical Modeling of Partially Shaded Photovoltaic Systems,” Energies, vol. 6, pp. 128-144 (2013)

Skoplaki E., Palyvos J.A., On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Sol. Energy 83 (2009) 614–624,

Souhar, O. and Prud’homme, C.: “Numerical analysis method of heat transfer in an electronic component using sensitivity analysis,” Journal of Computational Electronics, vol. 13, pp.1042-1053 (2014)

Swinbank W.C., Long-wave radiation from clear skies, Q. J. R. Meteorol. Soc. 89 (1963) 339–348

Tina G.M., Gagliano A., An improved multi-layer thermal model for photovoltaic modules, in: Proceedings of the Comput. Energy Sci. (SpliTech), Int. Multidiscip. Conf., IEEE, 2016, pp. 1–6.

Wilson, Edward L., and Robert E. Nickell. ”Application of the finite element method to heat conduction analysis.” Nuclear engineering and design 4.3 (1966): 276-286.

Yu, C., Shen, D., Tu, J., Chen, G., and Chai, L. Numerical analysis on thermal behavior of composite wall combined autoclaved aerated concrete with thermal insulting material in summer day. ASME. J. Thermal Sci. Eng. Appl, (2024), p. 1-12.

Zhou, J., Zhan, D., Qian, J., and Wei, T. Experimental investigation on the thermal performance of a large-size aluminum vapor chamber for multi-point heat sources. ASME. J. Thermal Sci. Eng. Appl, (2024), p. 1-19.

Published
2025-07-13
Section
Research Articles