A new interpolative $(\varphi,\psi)$-type $\mathfrak{Z}$-contraction with application to nonlinear matrix equation systems
Abstract
In this study, we introduce a new concept of interpolative $(\varphi,\psi)-$ type $\mathfrak{Z}-$ contraction via quasi-triangular $\theta-$admissible mapping and prove some related fixed point theorems in the context of $b-$ metric space. As an application of our results, we solve a system of non-linear matrix equations. Finally, a numerical example is presented to demonstrate the validity and practical significance of our approach.
Downloads
References
Aghajani, A., Abbas, M., Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b−metric spaces. Math. Slovaca. 2014, 64(4), 941–960.
Argoubi, H., Samet, B., Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082–1094.
Bakhtin, I. The contraction mapping principle in quasi metric spaces. Functional analysis. 1989, 30, 26–37.
Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 1922, 3, 133–181.
Boriceanu, M., Bota, M., Petru¸susel, A. Multivalued fractals in b-metric spaces. Central Eur. J. Math.2010, 8(2), 367–377.
Berinde, V. Generalized contractions in quasimetric spaces, Seminar on fixed point theory, Babe¸s-Bolyai Unversity. 1993, 3, 3–9.
Berinde, V. Sequences of operators and fixed points in quasimetric spaces, Studia Univ. Babe¸s-Bolyai Math. 1996, 41(4), 23–27.
Czerwik, S. Contraction mappings in b−metric spaces. Acta Mathematica et Informatica Universitatis ostraviensis. 1993, 1(1), 5–11.
Gautam, P., Kaur, C. Fixed points of interpolative Matkowski type contraction and its application in solving non-linear matrix equations, Rend. Circ. Mat. Palermo 2. 2022, 72, 2085–2102.
Huang, H., Deng, G., Radenovic, S. Fixed point theorems in b−metric spaces with applications to differential equations. J. Fixed Point Theory Appl.2018, 20(1), 1–24.
Hussain, N., Parvaneh, V., Roshan, J.R., Kadeburg, Z. Fixed points of cyclic weakly (ψ, φ, L, A, B)− contractive mappings ordered b−metric spaces with applications. Fixed Point Theory Appl.2013, 256, 1–18.
Kannan, R. Some Results on Fixed Points. Bull. Cal. Math. Soc. 1968, 10, 71–76.
Karapınar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87.
Karapınar, E., Agarwal, R.P., Aydi, H. Interpolative Reich-Rus-Ciric type contractions on partial metric spaces. Mathematics. 2018, 6, 1–7.
Karapınar, E., Alqahtani, O., Aydi, H. On interpolative Hardy-Rogers type contractions, Symmetry. 2018, 11(8), 1–7.
Karapınar,E. Revisiting simulation functions via interpolative contractions, Appl. Anal. Discrete Math. 2019, 13, 859–870.
Khojasteh, F., Shukla, S., Radenovic, S. A new approach to the study of fixed point theorems via simulation functions, Filomat. 2015, 29(6), 1189–1194.
Khan, M. S., Swaleh, M., Sessa, S. Fixed point theorems by altering distances between the points, Bull.Aust. Math. Soc. 1984, 30, 1–9.
Khan, M. S. A theorem on fixed points, Math. Seminar Notes, Kobe University. 1976, 4(2), 227–228.
Khan, M. S. Some fixed point theorems in metric metric and Banach space, Indian J. Pure. appl. Math. 1980,11 (4), 413–421.
Khan, M.S., Singh, Y.M., Karapınar, E. On the interpolative (φ, ψ) type Z− contraction. UPB Sci. Bull. Ser. A. 2021, 83(2), 25–38.
Long, J.H., Hu, X.Y., Zhang, L. On the Hermitian positive definite solution of the nonlinear matrix equation. Bull. Brazilian Math. Soc. New Ser. 2008, 39(3), 371–386.
Latif, A., Parvaneh, V., Salimi, P. Al-Mazrooei, A.E. Various Suzuki type theorems in b−metric spaces. J. Nonlinear Sci. Appl. 2015, 8(4), 363–377.
Ran, A.C., Reurings, M.C. A fxed point theorem in partially ordered sets and some applications to matrix equations. proc. Am. Math. Soc. pp. 2004, 1435–1443.
Samet, B., Vetro, C., Vetro, P. Fixed point theorems for α − ψ− contractive type mapping, Nonlinear Anal. 2012, 75, 2154–2165.
Karapinar, E., Kumam, P., Salimi, P. On α − ψ− Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013, 2013:94, 1–12.
Popescu, O. Some new fixed point theorems for α− Geraghty contractive type maps in metric spaces.Fixed Point Theory Appl. 2014, 190, 1–12.
Singh, S.L., Prasad, B. Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl. 2008, 55, 2512–2520.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



