Rida-Jassim integral transform: a tool for solving linear and non-linear differential equations

  • Hassan Kamil Jassim
  • Rida Talab Nasser Department of Mathematics, College of Education for Pure Science, University of Thi-Qar

Abstract

In this paper, we introduce a new integral transform belonging to the class of Laplace transforms, called the Rida-Jassim Transform (RJ Transform). We explore its properties and compare it to the classical Laplace transform. Furthermore, we provide proofs for the key properties associated with this transform and demonstrate its application in solving differential equations. By employing this new transform, we can reduce the original problem to an algebraic equation that can be solved directly, followed by applying the inverse transform to obtain the solution to the original problem.

Downloads

Download data is not yet available.

References

Aboodh, K. S., The new integral transform aboodh transform, Global Journal of Pure and Applied Mathematics, 9(1), 35–43, (2013).

Bokhari, A., Baleanu, D., Belgacem, R., Application of Shehu transform to Atangana-Baleanu derivatives, Journal of Mathematics and Computer Science, 20(2), 101–107, (2020).

Elzaki, T. M., The new integral transform Elzaki Transform, Global Journal of Pure and Applied Mathematics, 7(1), 57–64, (2011).

Baleanu, D., Jassim, H. K., Approximate Analytical Solutions of Goursat Problem within Local Fractional Operators, Journal of Nonlinear Science and Applications, 9, 4829–4837, (2016).

Ali, U., Malik, M. Y., Rehman, K. U., Alqarni, M. S., Exploration of cubic autocatalysis and thermal relaxation in a non-Newtonian flow field with MHD effects, Physica A: Statistical Mechanics and its Applications, 549, 124349, (2020).

Baleanu, D., Jassim, H. K., Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings, Fractal and Fractional, 3(26), 1–12, (2019).

Baleanu, D., Jassim, H. K., A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets, Fractal and Fractional, 3(30), 1–8, (2019).

Baleanu, D., Jassim, H. K., Al Qurashi, M., Solving Helmholtz Equation with Local Fractional Derivative Operators, Fractal and Fractional, 3(43), 1–13, (2019).

Davies, B., Integral transforms and their applications, Springer, New York, NY, (2002).

Eltayeb, H., Kiliman, A., Fisher, B., A new integral transform and associated distributions, Integral Transforms and Special Functions, 21(5), 367–379, (2010).

Jassim, H. K., Vahidi, J., Ariyan, V. M., Solving Laplace Equation within Local Fractional Operators by Using Local Fractional Differential Transform and Laplace Variational Iteration Methods, Nonlinear Dynamics and Systems Theory, 20(4), 388–396, (2020).

Abdelrahim Mahgoub, M. M., The new integral transform mohand transform, Advances in Theoretical and Applied Mathematics, 12(2), 113–120, (2017).

Kamal, H., Sedeeg, A., The new integral transform Kamal transform, Advances in Theoretical and Applied Mathematics, 11(4), 451–458, (2016).

Mohammed, M. G., Eaued, H. A., A Modification Fractional Homotopy Analysis Method for Solving Partial Differential Equations Arising in Mathematical Physics, IOP Conference Series: Materials Science and Engineering, 928, 042021, (2020).

Eaued, H. A., Jassim, H. K., Mohammed, M. G., A Novel Method for the Analytical Solution of Partial Differential Equations Arising in Mathematical Physics, IOP Conference Series: Materials Science and Engineering, 928, 042037, (2020).

Abdelrahim Mahgoub, M. M., The new integral transform sawi transform, Advances in Theoretical and Applied Mathematics, 14(1), 81–87, (2019).

Higgins, W. E., Munson, D. C., A Hankel transform approach to tomographic image reconstruction, IEEE Transactions on Medical Imaging, 7, 59–72, (1988).

Jassim, H. K., Vahidi, J., A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics, International Journal of Nonlinear Analysis and Applications, 12(1), 37–44, (2021).

Swain, N. R., Innovation of Yang Hussein Jassim’s method in solving nonlinear telegraph equations across multiple dimensions, Partial Differential Equations in Applied Mathematics, 14, 101182, (2025).

Jassim, H. K., Khafif, S. A., SVIM for solving Burger’s and coupled Burger’s equations of fractional order, Progress in Fractional Differentiation and Applications, 7(1), 73–78, (2021).

Jassim, H. K., Kadhim, H. A., Fractional Sumudu decomposition method for solving PDEs of fractional order, Journal of Applied and Computational Mechanics, 7(1), 302–311, (2021).

Issa, S. A., Tajadodi, H., Solve of Fractional Telegraph Equation via Yang Decomposition Method, Journal of Education for Pure Science-University of Thi-Qar, 14(4), 96–113, (2024).

Jassim, H. K., Mohammed, M. G., Natural homotopy perturbation method for solving nonlinear fractional gas dynamics equations, International Journal of Nonlinear Analysis and Applications, 12(1), 813–821, (2021).

Mohammed, M. G., Jassim, H. K., Numerical simulation of arterial pulse propagation using autonomous models, International Journal of Nonlinear Analysis and Applications, 12(1), 841–849, (2021).

Alzaki, L. K., Jassim, H. K., The approximate analytical solutions of nonlinear fractional ordinary differential equations, International Journal of Nonlinear Analysis and Applications, 12(2), 527–535, (2021).

Issa, S. A., Tajadodi, H., Yang Adomian Decomposition Method for Solving PDEs, Journal of Education for Pure Science-University of Thi-Qar, 14(2), 14–25, (2024).

Ahmad, H., Nasar, J. J., Atangana-Baleanu Fractional Variational Iteration Method for Solving Fractional Order Burger’s Equations, Journal of Education for Pure Science-University of Thi-Qar, 14(2), 26–35, (2024).

Nasar, J. J., Tajadodi, H., The Approximate Solutions of 2D-Burger’s Equations, Journal of Education for Pure Science-University of Thi-Qar, 10(3), 1–11, (2024).

Baleanu, D., Wu, G., Some further results of the laplace transform for variable-order fractional difference equations, Fractional Calculus and Applied Analysis, 22(6), 1641–1654, (2019).

Jafari, H., Zayir, M. Y., Jassim, H. K., Analysis of fractional Navier-Stokes equations, Heat Transfer, 52(3), 2859–2877, (2023).

Jafari, H., Jassim, H. K., Unlu, C., Nguyen, V. T., Laplace Decomposition Method for Solving the Two-Dimensional Diffusion Problem in Fractal Heat Transfer, Fractals, 32(4), 1–6, (2024).

Jafari, H., Jassim, H. K., Ansari, A., Nguyen, V. T., Local Fractional Variational Iteration Transform Method: A Tool For Solving Local Fractional Partial Differential Equations, Fractals, 32(4), 1–8, (2024).

Jassim, H. K., A new approach to find approximate solutions of Burger’s and coupled Burger’s equations of fractional order, TWMS Journal of Applied and Engineering Mathematics, 11(2), 415–423, (2021).

Martinez, F., Mohammed, P. O., Valdes, J. N., Non-conformable fractional Laplace transform, Kragujevac Journal of Mathematics, 46(3), 341–354, (2022).

Vivas-Cortez, M., Valdes, J. N., Hernandez, J. E. H., Velasco, J. V., Larreal, O., On non conformable fractional Laplace transform, Applied Mathematics and Information Sciences, 15(4), 403–409, (2021).

Jafari, H., Jassim, H. K., Baleanu, D., On the Existence and Uniqueness of Solutions for Local differential equations, Entropy, 18, 1–9, (2016).

Seewn, N. R., Yasser, M. T., Tajadodi, H., An efficient approach for nonlinear fractional PDEs: Elzaki Homotopy Perturbation Method, Journal of Education for Pure Science-University of Thi-Qar, 15(1), 89–99, (2025).

Jassim, H. K., Ahmad, H., Shamaoon, A., Cesarano, C., An efficient hybrid technique for the solution of fractional-order partial differential equations, Carpathian Mathematical Publications, 13(3), 790–804, (2021).

Taher, H. G., Ahmad, H., Singh, J., Kumar, D., Jassim, H. K., Solving fractional PDEs by using Daftardar-Jafari method, AIP Conference Proceedings, 2386, 060002, (2022).

Alzaki, L. K., Jassim, H. K., Time-Fractional Differential Equations with an Approximate Solution, Journal of the Nigerian Society of Physical Sciences, 4(3), 1–8, (2022).

Hussein, M. A., Jassim, H. K., Analysis of fractional differential equations with Atangana-Baleanu fractional operator, Progress in Fractional Differentiation and Applications, 9(4), 681–686, (2023).

Singh, J., Jassim, H. K., Kumar, D., Dubey, V. P., Fractal dynamics and computational analysis of local fractional Poisson equations arising in electrostatics, Communications in Theoretical Physics, 75(12), 1–8, (2023).

Swain, N. R., Jassim, H. K., Innovation of Yang Hussein Jassim’s method in solving nonlinear telegraph equations across multiple dimensions, Partial Differential Equations in Applied Mathematics, 14, 101182, (2025).

Yasser, M. T., Jassim, H. K., A new integral transform for solving integral and ordinary differential equations, Mathematical and Computer Sciences, (2025). doi:10.30511/mcs.2025.2045547.1254

Published
2025-08-24
Section
Research Articles