Investigating the properties and diverse applications of special polynomials linked to Appell sequences

  • Shahid Ahmad Wani
  • Taghreed Alqurashi
  • William Ramírez Universidad de la costa
  • Clemente Cesarano
  • Maria-Fernanda Heredia-Moyano

Abstract

This paper presents a study that builds upon existing research by generating novel results by applying the monomiality principle. The primary focus of this work is the construction and analysis of Tangent-based Appell polynomials, with a detailed exploration of their properties, including their explicit and determinant forms, as well as their compliance with the monomiality principle. The study further investigates specific classes of Appell polynomials, namely the Tangent-based Bernoulli, Euler, and Genocchi polynomials, deriving key outcomes for each. In addition, numerical and graphical representations of the Tangent-based Bernoulli, Euler, and Genocchi polynomials are provided, facilitating a deeper understanding of their characteristics. This research contributes to the broader field of special polynomials and their applications in various mathematical and scientific contexts.

Downloads

Download data is not yet available.

References

Appell, P.: Sur une classe de polynomes. Ann. Sci. Ecole. Norm. Sup. 9(2) (1880), 119-144.

Bedoya, D.; Cesarano, C.; Dıaz, S.; Ramırez, W.; New Classes of Degenerate Unified Polynomials. Axioms. 12 (2023), 21.

Cesarano, C.; Ramırez, W.; Dıaz, S.; Shamaoon, A.; Khan, W.A.; On Apostol-Type Hermite Degenerated Polynomials. Mathematics. 11 (2023), 1914.

Cesarano, C.; Ramırez, W.: Some new classes of degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials. Carpathian Math. Publ. 14 (2022), 354–363.

Cesarano, C.; Quintana, Y.; Ramırez, W.: Degenerate versions of hypergeometric Bernoulli-Euler polynomials. Lobachevskii J. Math. 45(8) (2024), 3508–3520.

Erdelyi A.; Magnus W.; Oberhettinger F.; Tricomi F.G.; Higher Transcendental Functions. Vol. III, McGraw–Hill Book Company, New York, Toronto and London, 1955.

Heredia-Moyano, M.F.; Hernandez, J.; Khan, W.H, Ramırez, W.; Wani S. A.: On discrete Appell polynomials of Apostol-Bernoulli–type polynomials and their patterns of distribution of zeros. J. Math. Computer Sci. 39 (2025), 280-291.

Quintana, Y.; Ramırez, W.: A degenerate version of hypergeometric Bernoulli polynomials: announcement of result. Commun. Appl. Ind. Math. 15(2) (2024), 36–43.

Ramırez, W.; Cesarano, C.; Dıaz, S. New Results for Degenerated Generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi Polynomials. WSEAS Trans. Math. 21 (2022), 604–608.

Ryoo C. S.: A note on the tangent numbers and polynomials. Adv. Studies Theor. Phys. 72 (2013), 447-454.

Ryoo C. S.: Some identities involving modified degenerate tangent numbers and polynomials. Global Journal of Pure and Applied Mathematics. 12(3) (2016), 2621-2630.

Ryoo C. S.: Some properties of two dimensional q-tangent numbers and polynomials. Global Journal of Pure and Applied Mathematics. 12(4) (2016), 2999-3007.

Ryoo C. S.: Modified degenerate tangent numbers and polynomials., Global Journal of Pure and Applied Mathematics. 12(2) (2016), 1567-1574.

Sandor J.; Crstici B.: Handbook of Number Theory, Vol. II, Kluwer Academic, Publishers, Dordrecht, Boston and London, 2004.

Steffensen J. F.: The poweriod, an extension of the mathematical notion of power. Acta. Math. 73 (1941) 333-366.

Wani S. A.; Khan S.: Certain properties and applications of the 2D Sheffer and related polynomials, Boletin de la Sociedad Matematica Mexicana, 26 (2020).

Wani S. A. and Khan S.; Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials, Tbilisi Mathematical Journal 12(1), (2019) 93-104.

Zayed, M.; Alqurashi, T.; Wani S. A. Ryoo, C.S.; Ramırez, W.: Several characterizations of bivariate quantum-HermiteAppell Polynomials and the structure of their zeros. AIMS Mathematics. 10(5) (2025), 11184-11207.

Published
2025-08-25
Section
Research Articles