Generalized Jordan bi-derivations on triangular algebra
Abstract
In the current investigation, our primary objective is to find the structure of generalized Jordan biderivations on triangular algebra. Infact, we establish that all generalized Jordan biderivations on a triangular algebra will be of the form of an inner derivation. Our proof contains an entirely different approach and conclusion from the existing classical theory in [13] which states that if R is a prime ring of characteristic different from 2, then any Jordan derivation of R is an ordinary derivation.
Downloads
References
Ahmad, W., Akhtar, M. S. and Mozumder, M., Characterization of (α, β)-bi-derivations in triangular algebras, Ann. Univ. Ferrara 70, 1687–1696, (2024).
Alsubhi, A., Shujat, F., and Fallatah, A., Bi-semiderivations on triangular algebra, Contemporary Math., 6 (4) (2025), 4747-4761.
Ansari, A. Z. and Shujat, F., Jordan ∗-derivations on standard operator algebras, Filomat 37(1), 37–41, (2023).
Ansari, A. Z., Shujat, F. and Fallatah, A., Structure of (σ, ρ) − n -derivations on rings, Contemporary Math. 5(4), (2024), 5666-5678.
Benkovic, D., Bi-derivations on triangular algebras, Linear Algebra Appl. 431(9), 1587–1602, (2009).
Bresar, M., Centralizing mappings and derivations in prime rings, J. Algebra 156(2), 385–394, (1993).
Bresar, M. and Vukman, J., Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321–322, (1988).
Cheung, W. S., Commuting maps of triangular algebras, J. London Math. Soc. 63(1), 117–127, (2001).
Cheung, W. S., Mappings on triangular algebras, Ph.D. Thesis, University of Victoria, (2000).
Cusack, J. M., Jordan derivations on rings, Proc. Amer. Math. Soc. 53(2), 321–324, (1975).
De Filippis, V., A product of two generalized derivations on polynomials in prime rings, Collect. Math. 61, 303–322, (2010).
De Filippis, V., Tiwari, S. K. and Singh, S. K., Generalized g-derivations on prime rings, J. Algebra Appl. 22(2), 235–247, (2023).
Herstein, I. N., Jordan derivations of prime rings, Canad. Bull. Math. 43, 1104–1110, (1957).
Lu, F. Y., Lie triple derivations on nest algebras, Math. Nachr. 280(8), 882–887, (2007).
Lu, F., The Jordan structure of CSL algebras, Studia Math. 190(3), 283–299, (2009).
Posner, E., Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093–1100, (1957).
Qi, X. F. and Hou, J. C., Lie higher derivations on nest algebras, Commun. Math. Res. 26(2), 131–143, (2010).
Zhang, J. H. and Yu, W. Y., Jordan derivations of triangular algebras, Linear Algebra Appl. 419, 251–255, (2006).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



