Some observations on generalized logarithmic statistical convergence of order ρ for difference sequences via ideals

  • Ömer Kişi Bartın University
  • Mehmet Gürdal
  • Selim Çetin

Abstract

This paper explores various forms of logarithmic summability and statistical convergence for real sequences using generalized difference sequences and ideals. First, we introduce the concepts of logarithmic (Δ^{m},I)-statistical convergence of order ρ and logarithmic strong (Δ_{p}^{m},I)-Cesàro summability of order ρ, analyzing their relationship. These notions are then extended to logarithmic Δ^{m}(f,I)-statistical convergence of order ρ and logarithmic strong Δ^{m}(f,I)-Cesàro summability of order ρ, with fundamental connections established.

Downloads

Download data is not yet available.

References

Aizpuru, A., Listan-Garcıa, M. C., Rambla-Barreno, F., Density by moduli and statistical convergence, Quaest. Math. 37 (4), 525-530, (2014).

Alghamdi, M. A., Mursaleen, M., Alotaibi, A., Logarithmic density and logarithmic statistical convergence, Adv. Differ. Equ., 227, 1-7, (2013).

Bhardwaj, V. K., Dhawan, S., f-statistical convergence of order α and strong Cesaro summability of order α with respect to a modulus, J. Inequal. Appl., 2015, 332:14, (2015).

Boztepe, A., D¨undar, E., Logarithmic ideal convergence, AK¨U FEM¨UB˙ID, 25, 89-94, (2025).

C¸ olak, R., Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub., 1, 121-129, (2010).

Das, P., Sava¸s, E., Ghosal, S. K., On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(9), 1509-1514, (2011).

Et, M., Strongly almost summable difference sequences of order m defined by a modulus, Stud. Sci. Math. Hung., 40(4), 463-476, (2003).

Et, M., Alotaibi, A., Mohiuddine, S. A., On (m, I)-statistical convergence of order α, Sci. World J., Article ID 535419, 5 pages, (2014).

Et, M., Altınok, H., Altın, Y., On generalized statistical convergence of order α of difference sequences, J. Funct. Spaces Appl., Article ID 370271, 7 pages, (2013).

Et, M., Ba¸sarır, M., On some new generalized difference sequence spaces, Period. Math. Hung., 35, 169-175, (1997).

Et, M., C¸ olak, R., On some generalized difference sequence spaces, Soochow J. Math., 21, 377-386, (1995).

Et, M., Gidemen, H., On mv (f)-statistical convergence of order α, Commun. Stat. Theory Methods, 49(14), 3521-3529, (2020).

Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244, (1951).

Gadjiev, A. D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(1), 129-138, (2002).

G¨urdal, M., S¸ahiner, A., Statistical approximation with a sequence of 2-Banach spaces, Math. Comput. Model., 55(3-4), 471-479, (2012).

G¨urdal, M., Sarı, N., Sava¸s, E., A-statistically localized sequences in n-normed spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2), 1484-1497, (2020).

G¨urdal, M., Yamanci, U., Statistical convergence and some questions of operator theory, Dynam. Systems Appl., 24 (7), 305-311, (2015).

Kadak, U., Mohiuddine, S. A., Generalized statistically almost convergence based on the difference operator which includes the p, q-gamma function and related approximation theorems, Results Math., 73, 9, (2018).

Kızmaz, H., On certain sequence spaces, Canad. Math. Bull., 24(2), 169-176, (1981).

Kostyrko, P., Salat, T., Wilczynski, W., I-convergence, Real Anal. Exchange, 26(2), 669-686, (2000/2001).

Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100, 161-166, (1986).

Mohiuddine, S. A., Statistical weighted A-summability with application to Korovkin’s type approximation theorem, J. Inequal. Appl., 2016, 101, (2016).

Mohiuddine, S. A., Alamri, B. A. S., Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM, 113(3), 1955-1973, (2019).

Moricz, F., Theorems relating to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences, Analysis, 24, 127-145, (2004).

Nabiev, A., Sava¸s, E., G¨urdal, M., Statistically localized sequences in metric spaces, J. Appl. Anal. Comput., 9(2), 739-746, (2019).

Yamancı U., G¨urdal M., Statistical convergence and operators on Fock space, New York J. Math., 22, 199-207, (2016).

Yamancı U., G¨urdal M., On lacunary ideal convergence in random n-normed space, J. Math., 868457, 1-8, (2013).

Savas, E., Kisi, ¨ O., G¨urdal, M., On statistical convergence in credibility space, Numer. Funct. Anal. Optim., 43(8), 987-1008, (2022).

G¨urdal M., S¸ahiner A., A¸cık, I., Approximation theory in 2-Banach spaces, Nonlinear Anal., 71(5-6), 1654-1661, (2009).

Published
2025-09-30
Section
Advances in Nonlinear Analysis and Applications