Modern Non-linear optimization Algorithm of large-scale for combinatorial approximate methods

  • Abbas Musleh salman Iraqi Ministry of Education
  • Asmaa N. Al-Janabi
  • Ahmed Hadi

Abstract

In this paper, we compare two methods, stochastic gradient descent (SGD) and gradient descent (GD), which are optimization algorithms used to minimize loss functions in machine learning. GD updates the model parameters by calculating the gradient over the entire dataset before taking a step. This ensures stable convergence but is computationally expensive. On the other hand, SGD updates the parameters after processing a single random data point, making it much faster but introducing noise. GD follows a smooth path to a minimum, while SGD takes a noisy, winding path, sometimes exceeding a local minimum but also escaping it. For large datasets, GD becomes inefficient, while SGD scales well and is typically used in deep learning. To balance stability and efficiency, both methods aim to find the optimal parameters for machine learning models, with GD focusing on accuracy and SGD on speed.

Downloads

Download data is not yet available.

References

El-yahyaoui, Y., Lafhim, L., Optimization problems with nonconvex multiobjective generalized Nash equilibrium problem constraints, Communications in Combinatorics and Optimization, (2024). https://doi.org/10.22049/cco.2024.29435.1993. Modern Non-linear Optimization Algorithm of large-Scale 9

Pandey, R., Pandey, Y., Singh, V., Robust optimality and duality for bilevel optimization problems under uncertain data, Communications in Combinatorics and Optimization, (2025). https://doi.org/10.22049/cco.2025.29950.2236.

Kheirfam, B., Nasrollahi, A., A second-order corrector wide neighborhood infeasible interior-point method for linear optimization based on a specific kernel function, Communications in Combinatorics and Optimization, (2021). https://doi.org/10.22049/CCO.2021.27044.1185.

Niu, F., Recht, B., Christopher, R., Wright, S. J., Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, (2011), 1-22.

Alridha, A. H., Salman, A. M., Mousa, E. A., Numerical optimization software for solving stochastic optimal control, J. Interdiscip. Math. 26, 889-895, (2023). https://doi.org/10.47974/JIM-1525.

Hasan, A. H., Salman, A. M., Al-Jilawi, A. S., The Applications of NP-hardness optimizations problem, J. Phys. Conf. Ser. 1818, 012179, (2021). https://doi.org/10.1088/1742-6596/1818/1/012179.

Ahmed, A., Al-Jilawi, A. S., Mathematical programming computational for solving NP-hardness problem, J. Phys. Conf. Ser. 1818, 012137, (2021). https://doi.org/10.1088/1742-6596/1818/1/012137.

Salman, A. M., Alridha, A., Hussain, A. H., Some topics on convex optimization, J. Phys. Conf. Ser. 1818, 012171, (2021). https://doi.org/10.1088/1742-6596/1818/1/012171.

Hasan, A., Salman, A. M., Numerical Optimization Approach for Solving Production Planning Problem Using Python language, 03, (2022). ISSN: 2660-5309.

Ahmed, A., Salman, A. M., Exploring optimization algorithms for challenging multidimensional optimization problems: A comparative approach, AIP Conf. Proc. 3097, 080025, (2024).

Salman, A. M., Al-Jilawi, A. S., Solving nonlinear optimization problem using approximation methods, (2022). https://doi.org/10.53730/ijhs.v6nS3.5699.

Salman, A. M., Al-Jilawi, A. S., Applications of maximum independent set, AIP Conf. Proc. 2398, 060015, (2022).

Salman, A. M., Al-Jilawi, A. S., Combinatorial Optimization and Nonlinear Optimization, J. Phys. Conf. Ser. 1818, 012134, (2021). https://doi.org/10.1088/1742-6596/1818/1/012134.

Hasan, A., Alsharify, F., Al-Khafaji, Z., A Review of Optimization Techniques: Applications and Comparative Analysis, Iraqi Journal for Computer Science and Mathematics 5, 122-134, (2024). https://doi.org/10.52866/ijcsm.2024.05.02.011.

Sulaiman, H. K., Hassan, A. M., Hammood, H. K., Alridha, A. H., Al-Khafaji, Z., An evaluation of the reliability optimization problem for the electromagnetic system of an airplane using a comparison of PSO and GA, AIP Conf. Proc. 3264, 050010, (2025). https://doi.org/10.1063/5.0259100.

Al-Jilawi, A. S., Alsharify, F. H., Review of Mathematical Modelling Techniques with Applications in Biosciences, Iraqi Journal for Computer Science and Mathematics 3, 135-144, (2022). https://doi.org/10.52866/ijcsm.2022.01.01.015.

Alridha, A. H., Alsharify, F. H., Al-Khafaji, Z., Maximizing Reliability in the Age of Complexity: A Novel Optimization Approach, Baghdad Science Journal 22, (2025). https://doi.org/10.21123/bsj.2024.9894.

Hiba A. Ahmed, A., Hasan, A. H.,Mathematical Optimization Strategies for address Production Mixing Challenges, Iraqi Journal of Science 66, 2446-2454, (2025). https://doi.org/10.24996/ijs.2025.66.6.21.

Alridha, A., Al-Jilawi, A. S., K-cluster combinatorial optimization problems as NP-Hardness problems in graph clustering, AIP Conf. Proc. 2398, 060034, (2022).

Kadhim, M. K., Wahbi, F. A., Alridha, A. H., Mathematical optimization modeling for estimating the incidence of clinical diseases, International Journal of Nonlinear Analysis and Applications 13, 185-195, (2022). https://doi.org/10.22075/ijnaa.2022.5470.

Ahmed, A., Wahbi, F. A., Kadhim, M. K., Training analysis of optimization models in machine learning, International Journal of Nonlinear Analysis and Applications 12, 1453-1461, (2021). https://doi.org/10.22075/ijnaa.2021.5261.

Published
2025-08-13
Section
Articles