Quotient space Henstock-Kurzweil integration on time scales
Abstract
We introduce Henstock-Kurzweil integrability for functions whose values lies in the quotient space on time scales. We define the Henstock-Kurzweil integral with respect to the Δ-derivative and ∇-derivative namely the quotient Henstock-Kurzweil Δ-integral and quotient Henstock-Kurzweil ∇-integral respectively. Result establishing the criterion of integrability is observed, and few properties of the integrals are formulated.
Relations between quotient Henstock-Kurzweil integral and quotient Riemann integral, and quotient Henstock-
Kurzweil integral and Banach Henstock-Kurzweil integral are also presented. In addition, as a linear combination of the Δ- and ∇-integrals we introduce the quotient Henstock-Kurzweil ♢α-integral and conclude with a theorem depicting the relation between the three integrals.
Downloads
References
R. P. Agarwal, B. Hazarika, S. Tikare, Dynamic equations on time scales and applications, CRC Press, Taylor & Francis Group, 2025.
C. D. Ahlbrandt, M. Bohner, Hamiltonian Systems on Time Scales. Journal of Mathematical Analysis and Applications 250, 561-578, (2000).
F. M. Atici, G. Sh. Guseinov, On Green’s functions and positive solutions for boundary value problems on time scales. Journal of Computational and Applied Mathematics 141, 75-99, (2002).
S. Avsec, B. Bannish, B. Johnson, S. Meckle, The Henstock-Kurzweil delta integral on unbounded time scales. PanAmerican Mathematical Journal 6(3), 77-98, (2006).
S. S. Cao, The Henstock integral for Banach-valued functions. Southeast Asian Bulletin of Mathematics 16(1), 35-40, (1992).
M. Cicho´n, On integrals of vector-valued functions on time scales. Communications in Mathematical Analysis 11(1), 94-110, (2011).
D. H. Fremlin, The Henstock and McShane integrals of vector-valued functions. Illinois Journal of Mathematics 38(3), 471-479, (1994).
R. Henstock, Definitions of Riemann type of variational integral. Proceedings of the London Mathematical Society 11, 402-418, (1961).
S. Hilger, Ein Maßkettenkalk¨ul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, University of W¨urzburg, Germany, 1988.
S. Hilger, Analysis on Measure Chains- A unified approach to continuous and discrete calculus. Results in Mathematics 18, 18-56, (1990).
S. Hilger, Differential and Difference Calculus- Unified!. Nonlinear Analysis, Theory, Methods & Appications 30(5), 2683-2694, (1997).
D. S. Kurtz, C. W. Swartz, Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane, 2nd ed. Singapore: World Scientific, 2012.
J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal 82, 418-449, (1957).
A. B. Malinowska, D. F. M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales. Dynamic Systems and Applications 18(3-4), 469-481, (2009).
R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, J. T. Lim, The Henstock and Henstock delta integrals. Journal of the Chungcheong Mathematical Society 26(2), 435-440, (2013).
J. M. Park, Y. K. Kim, D. H. Lee, J. H. Yoon, J. T. Lim, Convergence theorems for the Henstock delta integral on time scales. Journal of the Chungcheong Mathematical Society 26(4), 879-885, (2013).
A. Peterson, B. Thompson, Henstock–Kurzweil delta and nabla integrals⋆. Journal of Mathematical Analysis and Applications 323, 162-178, (2006).
G. Qin, C. Wang, Lebesgue-Stieltjes combined ♢α-measure and integral on time scales. RACSAM 115(50), (2021).
J. W. Roger Jr, Q. Sheng, Notes on the diamond-α dynamic derivative on time scales. Journal of Mathematical Analysis and Applications 326, (2007).
V. Sekhose, H. Bharali, Quotient space Riemann integration on time scales. Proyecciones Journal of Mathematics 44(1), 48-62, (2025).
Q. Sheng, A view of dynamic derivatives on time scales from approximations. Journal of Difference Equations and Applications 11(1), 63-81, (2005).
Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Applications 7, (2006).
A. P. Solodov, Henstock and McShane integrals for Banach-valued functions. Mathematical Notes 65(6), 723-730, (1999).
T. G. Thange, S. S. Gangane, Henstock-Kurzweil Integral for Banach valued function. Mathematics and Statistics 10(5), 1038-1049, (2022).
B. S. Thompson, Henstock-Kurzweil integrals on time scales. PanAmerican Mathematical Journal, (2008).
I. B. Yasar, A. Tuna, M. T. Dastjerdi, Some results on the diamond-α dynamic derivative on time scales. Applied Mathematical Sciences 1(1), 41-50, (2007).
G. Ye, On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. Journal of Mathematical Analysis and Applications 330, 753-765, (2007).
D. Zhao, X. You, J. Cheng, The Riemann-Stieltjes diamond-alpha integral on time scales. Journal of the Chungcheong Mathematical Society 28(1), 53-63, (2015).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).