Existence and uniqueness of solutions for loaded mixed-type equation with fractional integral operators

  • Umida Baltaeva
  • Florence Hubert
  • Yulduz Babajanova
  • Hamrobek Hayitbayev
  • PRAVEEN AGARWAL Anand ICE, Jaipur

Resumo

This paper investigates a boundary value problem for a secondorder integro-differential equation of mixed parabolic-hyperbolic type with variable coefficients and fractional loading. The main focus is on establishing the existence and uniqueness of a regular solution under integral gluing conditions imposed on the line of type change. The method of integral equations is employed to study the solvability of the problem. Sufficient conditions for unique solvability are formulated and proven. The results contribute to the theory of mixed-type equations with nonlocal and fractional conditions, which are relevant in various physical models involving memory and hereditary effects.

Downloads

Não há dados estatísticos.

Referências

Ahmad, B., Nieto, J. J., Existence results for nonlinear boundary value problems of fractional integro-differential equations with integral boundary conditions, Bound. Value Probl. 2009, 708576 (2009). https://doi.org/10.1155/2009/708576.

Cabada, A., Wang, G., Positive solutions of nonlinear fractional differential equations with integral boundary conditions, J. Math. Anal. Appl. 389, 403–411 (2012).

Agarwal, R. P., Baleanu, D., Hedayati, V., Rezapour, S., Two fractional derivative inclusion problems via integral boundary condition, Appl. Math. Comput. 257, 205–212 (2015).

Cabada, A., Hamdi, Z., Multiplicity results for integral boundary value problems of fractional order with parametric dependence, Fract. Calc. Appl. Anal. 18, 223–237 (2015). https://doi.org/10.1515/fca-2015-0015.

Kozhanov, A. I., Nonlocal problems with integral conditions for elliptic equations, Complex Var. Elliptic Equ. 64, 741–752 (2019).

Urinov, A. K., Nishonova, S. T., A problem with integral conditions for an elliptic-parabolic equation, Math. Notes 102, 68–80 (2017). https://doi.org/10.1134/S0001434617070082.

Mardanov, M. J., Sharifov, Y. A., Gasimov, Y. S., Cattani, C., Non-linear first-order differential boundary problems with multipoint and integral conditions, Fractal Fract. 5, 15 (2021). https://doi.org/10.3390/fractalfract5010015.

Xu, X., Zhang, L., Shi, Y., Chen, L. Q., Xu, J., Integral boundary conditions in phase field models, Comput. Math. Appl. 135, 1–5 (2023).

Caballero, J., Harjani, J., Sadarangani, K., Existence and uniqueness of positive solutions to a class of singular integral boundary value problems of fractional order, Mediterr. J. Math. 20, 86 (2023). https://doi.org/10.1007/s00009-023-02294-5.

Agarwal, P., Baltaeva, U., Alikulov, Y., Solvability of the boundary-value problem for a linear loaded integrodifferential equation in an infinite three-dimensional domain, Chaos Solitons Fractals 140, 110108 (2020). https://doi.org/10.1016/j.chaos.2020.110108.

Kiguradze, I. T., Chanturiya, T. A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Springer, Berlin (1993).

Mukhtarov, O. Sh., Mamedov, N. I., Boundary value problems for differential equations with transmission conditions, J. Math. Anal. Appl. 256, 121–133 (2000).

Eidelman, S. D., Ivasyshen, S. A., Analytic Methods for Solving Differential and Integro-Differential Equations, Springer, Berlin (2004).

Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam (1993).

Karimov, E. T., Akhatov, J. S., On a boundary value problem with nonlocal conditions for a mixed-type equation with Caputo fractional derivative, Electron. J. Differ. Equ. 2013(257), 1–12 (2013).

Abdullaev, O. Kh., Sadarangani, K. B., Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative, Electron. J. Differ. Equ. 2016(164), 1–10 (2016).

Karimov, E. T., Berdyshev, A. S., Rakhmatullaeva, N. A., Unique solvability of a non-local problem for mixed type equation with fractional derivative, arXiv preprint arXiv:1507.01366 (2015).

Salakhitdinov, M. S., Karimov, E. T., Uniqueness of an inverse source non-local problem for fractional order mixed type equation, arXiv preprint arXiv:1509.02009 (2015).

Berdyshev, A. S., Cabada, A., Karimov, E. T., Akhtaeva, N. S., On the Volterra property of a boundary problem with integral gluing condition for mixed parabolic-hyperbolic equation, arXiv preprint arXiv:1210.1919 (2012).

Bazhenov, M. V., Rubtsov, A. N., Boundary value problems with integral gluing conditions for mixed-type equations, Math. Math. Model. 9, 86–97 (2020).

Karimov, E. T., Tursunov, A. T., Nonlocal boundary value problems for mixed-type equations with fractional derivatives, Eurasian Math. J. 10, 87–95 (2019).

Hasanov, A., Ergashev, T. G., New decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Montes Taurus J. Pure Appl. Math. 3, 317–326 (2021).

Ergashev, T. G., On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients, Comput. Math. Appl. 77, 69–76 (2019). https://doi.org/10.1016/j.camwa.2018.09.014.

Ruzhansky, M., Tokmagambetov, N., Nonlocal problems for differential equations with fractional derivatives, Fract. Calc. Appl. Anal. 27(1), 101–124 (2024).

Feehan, P. M. N., Pop, C., Fractional Parabolic and Elliptic Equations: Analysis and Control, Springer (2022).

Jin, B., Lazarov, R., Kaluza, J., Numerical analysis of inverse problems involving fractional diffusion, SIAM J. Numer. Anal. 61(3), 1223–1249 (2023).

Yang, D., Yamamoto, M., Inverse problems for fractional diffusion equations, in Handbook of Fractional Calculus with Applications, vol. 3, 251–279, De Gruyter (2020).

Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier (2023).

Baltaeva, U., Babajanova, Y., Agarwal, P., Ozdemir, N., Solvability of a mixed problem with the integral gluing condition for a loaded equation with the Riemann-Liouville fractional operator, J. Comput. Appl. Math. 2023, 115066. https://doi.org/10.1016/j.cam.2023.115066.

Kartynnik, A. V., Three-point boundary-value problem with an integral space-variable condition for a second-order parabolic equation, Differ. Equ. 26, 1160–1166 (1990).

Choi, Y. S., Chan, K. Y., A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal. 18, 317–331 (1992).

Taier, A. E., Wu, R., Iqbal, N., Ali, S., The existence and uniqueness results of solutions for a fractional hybrid integro-differential system, Appl. Comput. Math. 13, 94–104 (2024).

Djiab, S., Benchohra, A. M., Hammouche, A., A new class of mixed fractional differential equations with integral boundary conditions, Moroccan J. Pure Appl. Anal. 7, 227–247 (2021).

Agarwal, P., Berdyshev, A. S., Karimov, E. T., Solvability of a nonlocal problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results Math. 71, 1235–1257 (2017).

Karimov, E. T., Al-Salti, N., Kerbal, S., An inverse source non-local problem for a mixed type equation with a Caputo fractional differential operator, East Asian J. Appl. Math. 7, 417–438 (2017).

Restrepo, J., Ruzhansky, M., Suragan, D., Explicit representations of solutions for linear fractional differential equations with variable coefficients, arXiv preprint arXiv:2006.1535 (2020).

Terlyga, O., Bellout, H., Bloom, F., A hyperbolic-parabolic system arising in pulse combustion: Existence of solutions for the linearized problem, Electron. J. Differ. Equ. 2013, 1–42 (2013).

Baltaeva, U. I., Alikulov, Y., Baltaeva, I. I., Ashirova, A., Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative, Nanosyst. Phys. Chem. Math. 12, 418–424 (2021).

Kiymaz, I., Agarwal, P., Jain, S., Cetinkaya, A., On a New Extension of Caputo Fractional Derivative Operator. In: Ruzhansky, M., Cho, Y., Agarwal, P., Area, I. (eds) Advances in Real and Complex Analysis with Applications, Trends in Mathematics. Birkh¨auser, Singapore (2017) https://doi.org/10.1007/978-981-10-4337-6 11

Singh, G., Agarwal, P., Chand, M., Jain, S., Certain fractional kinetic equations involving generalized k-Bessel function, Transactions of A. Razmadze Mathematical Institute 172(3,Part B), 559-570 (2018)

Jain, S., Agarwal, P., Ahmad, B., Al-Omari, S.K.Q., Certain recent fractional integral inequalities associated with the hypergeometric operators, Journal of King Saud University - Science, 28(1), 82-86 (2016).

El-Sayed, A. A., Baleanu, D., Agarwal, P., A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations, Journal of Taibah University for Science, 14(1), 963-974 (2020).

Brunner, H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge University Press, Cambridge (2017).

Baltaeva, U. I., Boundary-value problem for a loaded mixed-type equation with a characteristic line of type change, J. Math. Sci. 272, 202–214 (2023). https://doi.org/10.1007/s10958-023-06410-4.

Kim, S., Xu, L., Green’s function for second order parabolic equations with singular lower order coefficients, Commun. Pure Appl. Anal. 21(1), 1–21 (2022). https://doi.org/10.3934/cpaa.2021164.

Publicado
2025-12-19
Seção
Special Issue: Advanced Computational Methods for Fractional Calculus