Certain Subclasses of Bi-Univalent Functions Defined by $q$-Analogue of Ruscheweyh Differential Operator

  • N. Ravikumar JSS College of Arts, Commerce and Science, Mysuru
  • M. Madhushree JSS College of Arts, Commerce and Science, Mysuru
  • Siva Kota Reddy Polaepalli JSS Science and Technology University http://orcid.org/0000-0003-4033-8148

Abstract

In this paper, we find a new subclasses of the function class $\sum$ of bi-univalent functions defined in the open unit disk, which are associated with the $q$-analogue of Ruscheweyh differential operator and satisfy some subordination conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $|v_2|$ and $|v_3|$ for functions in the new subclasses introduced here.

Downloads

Download data is not yet available.

Author Biographies

N. Ravikumar, JSS College of Arts, Commerce and Science, Mysuru

Associate Professor and Chairman, Department of Mathematics

M. Madhushree, JSS College of Arts, Commerce and Science, Mysuru

Assistant Professor, Department of Mathematics

Siva Kota Reddy Polaepalli, JSS Science and Technology University

Professor, Departmnet of Mathematics, JSS Science and Technology, Mysuru-570 006, India

References

\bibitem{ahdm} Aldweby, H. and Darus, M., {\it Some subordination results on {{\(q\)}}-analogue of {Ruscheweyh} differential operator}, Abstr. Appl. Anal., Volume 2014, Article Id: 958563, 6 Pages, (2014).

\bibitem{dabjcwek} Brannan, D. A. and Clunie, J. and Kirwan, W. E., {\it Coefficient estimates for a class of star-like functions}, Can. J. Math., 22, 476--485, (1970).



\bibitem{dabtst} Brannan, D. A. and Taha, T. S., {\it On some classes of bi-univalent functions}, Stud. Univ. Babe{\textcommabelow{s}}-Bolyai, Math., 31(2), 70--77, (1986).

\bibitem{ed} Deniz, E., {\it Certain subclasess of bi-univalent functions satisfying subordinate conditions}, Journal of Classical Analysis, 2(1), 49--60, (2013).
\bibitem{jfh} Jackson, F. H., {\it XI.—On $q$-Functions and a certain Difference Operator}, Transactions of the Royal Society of Edinburgh, 46(2), 253--281, (1909).



\bibitem{tjlscmi} Latha, T. J. and Indrani, S. C. M., {\it Coefficient Estimates for Bi-univalent Ma-Minda Starlike and Convex Functions}, Journal of Emerging Technologies and Innovative Research, 6(6), 68--74, (2019).

\bibitem{ksrd} Kanas, S. and R{\u{a}}ducanu, D., {\it Some class of analytic functions related to conic domains}, Math. Slovaca, 64(5), 1183--1196, (2014).

\bibitem{ml} Lewin, M., {\it On a coefficient problem for bi-univalent functions}, Proc. Am. Math. Soc., 18, 63--68, (1967).

\bibitem{wcmdm} Ma, W. and Minda, D., {\it A unified treatment of some special classes of univalent functions}, Proceedings of the conference on complex analysis, held June 19-23, 1992 at the Nankai Institute of Mathematics, Tianjin, China, Cambridge, MA: International Press, Pages 157--169, (1994).


\bibitem{rst} Ruscheweyh, S., {\it New criteria for univalent functions}, Proc. Am. Math. Soc., 49, 109--115, (1975).


\bibitem{hmsakmpg} Srivastava, H. M., Mishra, A. K. and Gochhayat, P., {\it Certain subclasses of analytic and bi-univalent functions}, Appl. Math. Lett., 23(10), 1188--1192, (2010).

\bibitem{thso} Hayami, T. and Owa, S., {\it Coefficient bounds for bi-univalent functions}, Panam. Math. J., 22(4), 15--26, (2012).


\bibitem{qhxhmszl} Xu. Q-H., Srivastava, H. M. and Li, Z., {\it A certain subclass of analytic and close-to-convex functions}, Appl. Math. Lett., 24(3), 396--401, (2011).


\bibitem{xflapw} Li, X-F. and Wang, A-P., {\it Two new subclasses of bi-univalent functions}, Int. Math. Forum, 7, 1495--1504, (2012).
Published
2025-08-24
Section
Articles