Entropy solution for double phase elliptic (p, q)-Laplacien problem with Right-Hand Side Measure

  • El Mehdi Hassoune University Chouib Doukalli
  • Ahmed JAMEA
  • Abdelghali AMMAR
  • Adnane KADDIRI

Abstract

In this work, we establish the existence of entropy solutions for a double phase elliptic (p,q)-
Laplacian problem, subject to Dirichlet boundary conditions and measure data on the right-hand side. Our
main strategy combines the variational method with the framework of Sobolev spaces, by verifying the conditions of the Minty–Browder theorem.

Downloads

Download data is not yet available.

References

1. A.sabri and A.Jamea. Weak solution for nonlinear degenerate elliptic problem with dirichlet-type boundary condition
in weighted sobolev spaces. Mathematica Bohemica, 26(3):4-18, 2021. https://doi.org/10.21136/MB.2021.0004-20.
2. G.Dal Maso, F.Murat, L.Orsina and A.Prignet. Renormalized solutions of elliptic equations with general measure
data.Ann. Scuola Norm. Sup. Pisa Cl. Sci. ol. XXVIII (1999), pp. 741-808.
3. L. Boccardo, T. Gallouet, L.Orsina:Existence and uniqueness of entropy solutions for nonlinear elliptic equations with
measure data; Ann. Inst. Henri Poincar´e, Vol. 13, nO 5, 1996, p. 539-551, 1992.
4. L. Boccardo, T. Gallouet F. Murat : Unicite de la solution de certaines ´equations. elliptiques non lineaires; C. R. Acad.
Sci. Paris, t. 315, S´erie I, p. 1159-1164,(1992).
5. A. C. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations, Bol. Soc. Paran. Mat. 26, 117:132(2008).
6. P. A. Hasto; The p(x)-Laplacian and applications, Proceedings of the International Conference on Geometric Function
Theory. 15, 53:62(2007).
7. M. Ruzicka: Electrorheological Fluids, Modeling and Mathematical Theory, Lectures Notes in Math.,Vol. 1748, Springer,
Berlin, 2000.
8. Ph. B´enilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, J.L. Vazquez: An L1
- theory of existence and uniqueness
of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 22 (2) (1995)
241273.
9. A. Sabri, A. Jamea, H. A. Talibi, Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary
condition in weighted Sobolev spaces, Mathematica Bohemica, Vol. 147, No. 1, pp. 113-129, 202
10. A. Sabri, A. Jamea, Rothe time-discretization method for a nonlinear parabolic p(u) -Laplacian problem with Fouriertype boundary condition and L1
-data. Ricerche mat (2020). https://doi.org/10.1007/s11587-020-00544-2 (6) (2010)
13761400.
11. C. Zhang: Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential
Equations 2014 (92) (2014) 1-14.
12. X. Fan, D. Zhao: On the spaces Lp(x)
(W) and W m,p(x)
(W). Journal of Mathematical Analysis and Applications 263
(2) (2001) 424-446.
13. M. Sanch´on, J.M. Urbano: Entropy solutions for the p(x)-Laplace equation. Transactions of the American Mathematical
Society 361 (12) (2009) 6387-6405.
14. V. Mustonen P. Drabek, A. Kufner. Pseudo-monotonicity and degenerated or singular elliptic operators, bull. austral.
Math. Soc, (58):213-221, 1998
15. G. Stampacchia, Le probl‘eme de Dirichlet pour les ´equations elliptiques du second ordre ‘a coefficients discontinus.
Ann. Inst. Fourier 15 (1965), 189–258
16. H. Brezis and W. Strauss, Semilinear elliptic equations in L1
. J. Math. Soc. Japan 25 (1973), 565–590.
17. H. Brezis, Some variational problems of the Thomas-Fermi type. In Variational Inequalities (Ed. Cottle, Gianessi-Lions)
(Wiley, New York) (1980), 53–73.
18. P. B´enilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation. Journal of Evolution Equations
3 n° 4 (2003), 673–770.
Published
2025-09-01
Section
Articles