Certain properties of Mathieu-type series associated with hypergeometric functions

  • Harshal S. Gharat
  • Prof. Bharti V. Nathwani
  • P. Agarwal

Resumo

The objective of current article is to investigate some properties of Mathieu-type series and with their alternating version as kernel Gauss hypergeometric function. Also we discussed some particular cases of the result obtained here.

Downloads

Não há dados estatísticos.

Referências

Pogany, T.K., Integral representation of a series which includes the Mathieu a-series, J. Math. Anal. Appl.,2004, 296 , 309—313.

Cahen, E. , Sur la fonction ζ(s) de Riemann et sur des fontions analogues, Ann. Sci. l’Ecole Norm. Sup. Ser. Math., 1894, 75-–164.

Pogany, T.K. and Tomovski, Z, On Mathieu-type series which terms contain general- ized hypergeometric function pFq and Meijer’s G-function, Math. Comput. Modell., 2008, 47, 9-10, 952—969.

Baricz, A, Butzer, P.L. Butzer, Pogany T.K. , Alternating Mathieu series, Hilbert-Eisenstein series and their generalized Omega functions, in T. Rassias, G. V. Milovanovic (Eds.), Analytic Number Theory, Approximation Theory, and Special Functions - In Honor of Hari M. Srivastava, 775, Springer, New York, 2014.

Pogany, T.K., Integral representation of Mathieu (a, λ)-series, Integral Transforms Spec. Funct.,2005, 16,8, 685—689.

Pogany,T.K.and H.M. Srivastava, Some Mathieu-type series associated with the Fox- Wright function, Comput. Math. Appl., 2009, 57, 1, 127-–140.

Jain, S.; Goyal, R.; Agarwal, P.; Lupica, A.; Cesarano, C. Some results of extended beta function and hypergeometric functions by using Wiman’s function, Mathemtics 2021, 9(22), 2944.

Goyal, R.; Agarwal, P.; Momami, S.; Rassias, M.T. An Extension of Beta Function by Using wiman’s function. Axioms, 2021,10, 187.

Wiman, A. U ber der Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191-201.

Shadab, M.S.; Jabee, S.J.; Choi, J.C. An extended Beta function and its applications, Far East J. Math. Sci. (FJMS) 2018, 103, 235–251.

Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 2004, 159, 589–602.

Olver, W.J.F.; Lozier, W.D.; Boisvert, F.R.; Clark, W.C.,NIST Handbook of Mathematical Functions ; Cambridge University Press, New York, NY, USA, 2010.

Rainville, E.D., Special Functions; Macmillan: New York, NY, USA, 1960.

Nathwani, B. V., Dave, B. I.; Generalized Mittag-Leffler function and its properties, The Mathematics student Journal, 2017, 86(1-2), 63–76.

Nathwani, B. V.; Inequalities involving Mittag-Leffler type q-Konhauser polynomial, Studia Universitatis Babes-Bolyai Mathematica, 2020, 65(3), 379–401.

Prajapati, J. C., Dave, B. I., Nathwani, B. V.; On a unification of generalized Mittag-Leffler function and family of Bessel functions, Advances in Pure Mathematics, 2013, 3, 127–137.

Prajapati, J. C., Nathwani, B. V.; Fractional calculus of a unified Mittag-Leffler function, Ukrainian Mathematical Journal, 2015, 66(8), 1267–1280.

Sanjhira, R. R., Nathwani, B. V., Dave, B. I.; Generalized Mittag-Leffler matrix function and associated matrix polynomials, The Journal of the Indian Mathematical Society, 2019, 86(1-2), 161–178.

Publicado
2025-12-19
Seção
Special Issue: Advanced Computational Methods for Fractional Calculus