Study of fractional Caputo derivatives operator by symmetric kernel

  • Harshal S. Gharat
  • Prof. Bharti V. Nathwani
  • P. Agarwal

Resumo

The current study investigates the new type of Caputo fractional derivative operator with a symmetric kernel. We also examine some important properties related to this new type of Caputo fractional derivative operator.

Downloads

Não há dados estatísticos.

Referências

Kilbas, A.A., Srivastava H.M., Trujillo, J.J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006.

Agarwal, P., Baleanu, D., Chen, Y., Momani, M.S. Fractional Calculus, ICFDA 2018, Amman, Jordan, July 16–18. Proceedings in Mathematics and Statistics. Springer, Berlin 2019.

Goyal, R.; Agarwal, P.; Parmentier, A.; Cesarano, C. An Extension of Caputo Fractional Derivative Operator by Use of Wiman’s Function. Symmetry 2021, 13, 2238.

Kiyamaz, I.O., Cetinkaya A., Agarwal P. An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 2016, 9, 3611–3621.

Wiman A. Uber die Nullstellun der Funktionen Eα(x). Acta Mathematica. 1905, 29, 217–234.

Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittage Leffler Functions Related Topics and Application, 2nd ed.; Springer: New York, NY, USA, 2020.

Rainville E.D. Special Functions, Macmillan, New York, NY, USA, 1960.

Goyal R., Agarwal P., Momami S., Rassias M.T. An Extension of Beta Function by Using Wiman’s Function. Axioms.bf 2021, 10, 187.

Olver W.J.F., Lozier W.D., Boisvert F.R., Clark W.C. NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, USA, 2010.

Prabhakar T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Mathematical Journal. 1971, 19, 7–15.

Mittag-Leffler G.M. Sur la nouvelle fonction Eα(x). Comptes rendus de l’Academie des Sciences.1903, 137, 554–558.

Srivastava H.M., Manocha H.L. A treatise on generating functions, Ellis Horwood Limited, Chichester, 1984.

Gerhold S. Asymptotics for a varient of the Mittag-Leffler function. Int. Trans. Spec. Func. 2012, 23(6), 397–403.

Publicado
2025-12-19
Seção
Special Issue: Advanced Computational Methods for Fractional Calculus