On the Existence of Optimal Binary LCD Codes Under Hierarchical Poset Metrics
Resumo
A linear code is referred to as a linear complementary dual (LCD) code when it has only a trivial intersection with its dual. LCD codes have gained prominence in research due to their application in cryptography, communication systems, and data storage. ”This article explores the binary LCD hierarchical poset code, wherein the dimension is determined by the rank of the Gramian of its generator matrix. By employing the canonical systematic form of the generator matrix of the hierarchical poset code, the corresponding Gramian matrix is specified by imposing certain conditions on the support of basis elements. Utilizing the Griesmer bound of linear code under Hamming metric and the canonical decomposition of the hierarchical poset code, a upper bound is established on the maximum distance of the hierarchical poset code with any hull dimension under specified conditions. Furthermore, the study investigates the existence of optimal binary LCD codes under a hierarchical poset metric when $n$ is equivalent to $a$ mod $8$ where, $a$ ranges from $0$ to $7$.”Downloads
Referências
James L. Massey, Linear codes with complementary duals, Discrete Mathematics, Volumes 106–107, 1992, Pages 337-342, ISSN 0012-365X, https://doi.org/10.1016/0012-365X(92)90563-U.
Nicolas Sendrier, Linear codes with complementary duals meet the Gilbert–Varshamov bound, Discrete Mathematics, Volume 285, Issues 1–3, 2004, Pages 345-347, ISSN 0012-365X, https://doi.org/10.1016/j.disc.2004.05.005.
Claude Carlet, Sylvain Guilley. Complementary dual codes for counter-measures to side-channel attacks. Advances in Mathematics of Communications, 2016, 10(1): 131-150. doi: https://doi.org/10.3934/amc.2016.10.131
Ching-Yi Lai and Alexei Ashikhmin, ”Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enumerators,” in IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 622-639, Jan. 2018, doi: https://doi.org/10.1109/TIT.2017.2711601.
Liangdong Lu, Ruihu Li, Luobin Guo and Qiang Fu, ”Maximal entanglement entanglement-assisted quantum codes constructed from linear codes”. Quantum Information Processing 14, 165–182 (2015). https://doi.org/10.1007/s11128-014-0830-y
Stefka Bouyuklieva, ”Optimal binary lcd codes”, Designs, Codes and Cryptography, 89, 2445–2461 (2021). https://doi.org/10.1007/s10623-021-00929-w
Guodong Wang, Shengwei Liu, and Hongwei Liu, ”New constructions of optimal binary LCD codes” Finite Fields and their Applications,Volume 95, 2024, 102381, ISSN 1071-5797, https://doi.org/10.1016/j.ffa.2024.102381.
Claude Carlet, Sihem Mesnager, Chunming Tang, and Yanfeng Qi, ”New characterization and parametrization of LCD codes” IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 39-49, Jan. 2019, doi: https://doi.org/10.1109/TIT.2018.2829873.
Hualu Liu, Xiusheng Liu and Long Yu, ”New binary and ternary lcd codes from matrix-product codes”, Linear and Multilinear Algebra, 70(5):809–823, 2022.
Shitao Li, Minjia Shi, and Huizhou Liu ”Several constructions of optimal LCD codes over small finite fields”, Cryptography and Communications, 16, 779–800 (2024). https://doi.org/10.1007/s12095-024-00699-x
Ranya Boulanouar, Aicha Batoul and Delphine Boucher ”An overview on skew constacyclic codes and their subclass of LCD codes”, Advances in Mathematics of Communications 15, no. 4 (2021): 611-632.
Djoko Suprijanto and Hopein Christofen Tang ” Skew cyclic codes over Z4 + vZ4 with derivation: structual properties and computational results” Communications in Combinatorics and Optimization, Vol. 10, No. 3 (2025), pp. 497-517 https://doi.org/10.22049/cco.2024.28837.1744
Yang Liu, Ruihu Li, Qiang Fu, and Hao Song ”On the minimum distances of binary optimal LCD codes with dimension 5”, AIMS Mathematics, 9(7):19137–19153, 2024, doi: 10.3934/math.2024933.
Conghui Xie, Hao chen and Chengju Li, ”New Ternary LCD Cyclic and BCH Codes” Advances in Mathematics of Communication, 2025
Makoto Araya, Masaaki Harada, and Ken Saito ”Quaternary Hermitian Linear Complementary Dual Codes”, IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 2751-2759, May 2020, doi: https://doi.org/10.1109/TIT.2019.2949040.
Lin Sok. ”On Hermitian LCD codes and their Gray image”, Finite Fields and their Applications, 62:101623, 2020, https://doi.org/10.1016/j.ffa.2019.101623.
Lin Sok, Minjia Shi, and Patrick Sole, ”Constructions of optimal LCD codes over large finite fields” Finite Fields and their Applications, 50:138–153, 2018, https://doi.org/10.1016/j.ffa.2017.11.007.
Rohini Baliram More and Venkatrajam Marka, ”Optimal binary hierarchical poset code having hull dimension one”, Advances and Applications in Discrete Mathematics, 41(3), pp. 239–259, 2024, doi: https://doi.org/10.17654/0974165824018.
Richard A. Brualdi, Janine Smolin Graves, and K. Mark Lawrence, ”Codes with a poset metric”, Discrete Mathematics, 147(1-3):57–72, 1995, https://doi.org/10.1016/0012-365X(94)00228-B.
Marcelo Firer, Marcelo Muniz S. Alves, Jerry Anderson Pinheiro and Luciano Panek, ”Poset Codes : Partial Orders , Metrics and Coding Theory”, volume 1. 2018, https://doi.org/10.1007/978-3-319-93821-9
Roberto Assis Machado, Jerry Anderson Pinheiro, and Marcelo Firer ”Characterization of Metrics Induced by Hierarchical Posets” IEEE Transactions on Information Theory, vol. 63, no. 6, pp. 3630-3640, June 2017, doi: https://doi.org/10.1109/TIT.2017.2691763.
Kenza Guenda, Somphong Jitman, and T. Aaron Gulliver, ”Constructions of good entanglement-assisted quantum error correcting codes”, Designs, Codes, and Cryptography, 86, 121–136 (2018). https://doi.org/10.1007/s10623-017-0330-z
Luciano Viana Felix and Marcelo Firer, ”Canonical- systematic form for codes in hierarchical poset metrics”, Advances in Mathematics of Communications, 6(3):315–328, 2012, doi:https://doi.org/10.3934/amc.2012.6.315
W Cary Huffman and Vera Pless, ”Fundamental of Error-Correcting Codes”, Cambridge,University Press, 2003.
Mohammed El Badry, Abdelfattah Haily and Ayoub Mounir, ”On LCD skew group codes”, Design Codes and Cryptography, 93, 1487–1499 (2025). https://doi.org/10.1007/s10623-024-01561-0.
Shikha Yadav, Indibar Debnath and Om Prakash, ”Some constructions of l-Galois LCD codes” Advances in Mathematics of Communications, 2025, 19(1): 227-244. doi: https://doi.org/10.3934/amc.2023053.
Sanjit Bhowmick, Satya Bagchi and Ramkrishna Bandi, ”On LCD codes over Z4, Indian Journal of Pure and Applied Mathematics, 2024, https://doi.org/10.1007/s13226-024-00563-x
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



