Natural convection flow of magnetohydrodynamic micropolar fluid in a dome-shaped enclosures
Résumé
This study conducts a numerical investigation into laminar flow and natural convection heat transfer of micropolar fluid within dome-shaped enclosures (DSEs). The enclosure features adiabatic left and right walls, while the bottom wall is maintained at constant temperatures, with top dome-shape wall is cold. The study examines how the unique geometry of DSEs influences natural convection (N.C.) and flow characteristics under varying parameters such as Rayleigh number (Ra), Prandtl number (Pr), Hartmann number (Ha), micropolar parameter (K), and radiation parameter (Rd). The developed mathematical model, based on the vorticity-stream function method, investigates the influence of magnetic field strength and direction, micropolar fluid characteristics, and radiative heat transfer on both thermal and flow behavior. The results reveal significant modifications in velocity profiles, temperature distribution, and microrotation patterns due to changes in magnetic and radiative effects. This comprehensive analysis contributes to a deeper understanding of MHD natural convection in micropolar fluids with thermal radiation, aiding progress in advanced heat management systems and industrial applications.
Téléchargements
Références
C. Perdikis and A. Raptis, Heat transfer of a micropolar fluid by the presence of radiation, Heat Mass Transf. 31, 381–382, (1996).
M. Nazeer, N. Ali, and T. Javed, Natural convection flow of micropolar fluid inside a porous square conduit: effects of magnetic field, heat generation/absorption, and thermal radiation, J. Porous Media. 21, no. 10, (2018).
M. Zadravec, M. Hriberˇsek, and L. ˇSkerget, Natural convection of micropolar fluid in an enclosure with boundary element method, Eng. Anal. Bound. Elem. 33, no. 4, 485–492, (2009).
O. Aydın and I. Pop, Natural convection in a differentially heated enclosure filled with a micropolar fluid, Internat. J. Thermal Sci. 46, no. 10, 963–969, (2007).
T. H. Hsu, Natural convection of micropolar fluids in a rectangular enclosure, Internat. J. Engrg. Sci. 34, no. 4, 407–415, (1996).
O. Aydin and I. Pop, Natural convection from a discrete heater in enclosures filled with a micropolar fluid, Internat. J. Engrg. Sci. 43, no. 19–20, 1409–1418, (2005).
N. Ali, M. Nazeer, T. Javed, et al., A numerical study of micropolar flow inside a lid-driven triangular enclosure, Meccanica. 53, 3279–3299, (2018).
T. Javed, Z. Mehmood, and M. A. Siddiqui, Mixed convection in a triangular cavity permeated with micropolar nanofluid-saturated porous medium under the impact of MHD, J. Braz. Soc. Mech. Sci. Eng. 39, 3897–3909, (2017).
V. Raja Rajeswari, K. Venkatadri, and V. Ramachandra Prasad, Nanoparticle shape factor impact on double diffusive convection of Cu-water nanofluid in trapezoidal porous enclosures: A numerical study, Numer. Heat Transfer, Part A. 2024, 1–20.
K. Venkatadri, K. V. N. Murthy, T. A. B´eg, O. A. B´eg, and S. Kuharat, Numerical simulation of natural convection in a rectangular enclosure filled with porous medium saturated with magnetic nanofluid using Buongiorno’s two-component model, Canad. J. Chem. Eng. 2024, 1–22.
K. Venkatadri, O. A. B´eg, P. Rajarajeswari, and V. R. Prasad, Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: Heat flow visualization through energy flux vectors, Internat. J. Mech. Sci. 171, 105391, (2020).
K. Venkatadri, S. Fazuruddin, O. A. B´eg, and O. Ramesh, Natural convection of nanofluid flow in a porous medium in a right-angle trapezoidal enclosure: a Tiwari and Das’ nanofluid model, J. Taibah Univ. Sci. 17, no. 1, (2023).
R. Bhargava, S. Sharma, P. Bhargava, et al., Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with Rayleigh number effects, Internat. J. Appl. Comput. Math. 3, 1347–1379, (2017).
L. Samaei, H. M. Deylami, N. Amanifard, and H. Moayedi, Numerical evaluation of using micropolar fluid model for EHD-induced natural convection heat transfer through a rectangular enclosure, J. Electrostat. 101, 103372, (2019).
Z. Alloui and P. Vasseur, Natural convection in a shallow cavity filled with a micropolar fluid, Internat. J. Heat Mass Transf. 53, no. 13–14, 2750–2759, (2010).
S. A. M. Mehryan, M. Izadi, and M. A. Sheremet, Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model, J. Mol. Liq. 250, 353–368, (2018).
S. Ahmad, K. Ali, T. Sajid, U. Bashir, F. L. Rashid, R. Kumar, et al., A novel vortex dynamic for micropolar fluid flow in a lid-driven cavity with magnetic field localization – A computational approach, Ain Shams Eng. J. 15, no. 2, 102448, (2024).
H. Shahzad, Z. Li, T. Tang, and M. Kanwal, Impact of micro-rotation on a double-diffusive radiative flow within a lid-driven enclosure featuring Joule heating, porosity and Lorentz forces, J. Mol. Liq. 406, 125067, (2024).
S. Jaiswal and P. K. Yadav, Analytical investigation of porous medium effects on the flow of two micropolar fluids in a rotating annulus, Internat. J. Mod. Phys. B (2024), Article ID 2550111.
M. S. Aghighi, H. Masoumi, and A. Farsi, Natural convection of viscoplastic fluids in a triangular enclosure, Appl. Eng. Sci. 19, 100186, (2024).
M. S. Alam, M. N. Huda, M. M. Rahman, and M. M. Billah, Statistical and numerical analysis of magnetic field effects on laminar natural convection heat transfer of nanofluid in a hexagonal cavity, Internat. J. Thermofluids. 24, 100856, (2024).
K. Venkatadri, R. Saravana, O. A. B´eg, et al., Robust finite difference scheme for the magnetohydrodynamics natural convection in a quadrant-shaped enclosure with radiation effect, Eur. Phys. J. Plus. 139, 702, (2024).
M. Hamid, M. Usman, W. A. Khan, R. U. Haq, and Z. Tian, Natural convection and multidirectional magnetic field inside a square shaped cavity with sinusoidal temperature and heated/cold blocks, Internat. Commun. Heat Mass Transf. 152, 107291, (2024).
A. Mahdy, S. E. Ahmed, and M. A. Mansour, Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al2O3–Cu water hybrid nanofluid, Nonlinear Anal.: Model. Control. 26, no. 6, 1123–1143, (2021).
N. Ali, M. Nazeer, and T. Javed, Finite element simulations of free convection flow inside a porous inclined cavity filled with micropolar fluid, J. Porous Media. 24, no. 2, (2021).
Z. A. Raizah, S. E. Ahmed, D. Alrowaili, M. A. Mansour, and Z. Morsy, Magnetic micropolar nanofluids flow in double lid-driven enclosures using two-energy equation model, Heat Transfer. 50, no. 3, 2743–2763, (2021).
C. Sivarami Reddy, V. Ramachandra Prasad, and K. Jayalakshmi, Numerical simulation of natural convection heat transfer from a heated square cylinder in a square cavity filled with micropolar fluid, Heat Transfer. 50, no. 6, 5267–5285, (2021).
S. M. Seyyedi, M. Hashemi-Tilehnoee, E. P. Del Barrio, A. S. Dogonchi, and M. Sharifpur, Analysis of magnetonatural-convection flow in a semi-annulus enclosure filled with a micropolar-nanofluid; a computational framework using CVFEM and FVM, J. Magn. Magn. Mater. 568, 170407, (2023).
S. Dutta, P. Kumar, and J. C. Kalita, Streamfunction-velocity computation of natural convection around heated bodies placed in a square enclosure, Internat. J. Heat Mass Transf. 152, 119550, (2020).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



