Numerical analysis of magnetohydrodynamic boundary-layer flow and heat transfer with thermal radiation over a stretching wedge surface

  • Vanaja K Malla Reddy University
  • Chenna Sumalatha Malla Reddy University

Résumé

This study presents a comprehensive numerical analysis of magnetohydrodynamic (MHD) boundary-layer flow and heat transfer over a stretching wedge surface, incorporating the effects of thermal radiation and suction/injection. The governing nonlinear partial differential equations are transformed into ordinary differential equations using appropriate similarity transformations. The resulting system of coupled nonlinear ordinary differential equations is solved using the robust fourth-order Runge–Kutta method in combination with the shooting technique. The influence of key physical parameters—including the magnetic parameter \( M \), radiation parameter \( R_d \), wedge parameter \( \beta \), Prandtl number \( Pr \), and suction/injection parameter \( S \)—on the velocity and temperature profiles, skin friction coefficient, and Nusselt number is thoroughly investigated. Results indicate that increasing the magnetic field strength suppresses the velocity profile while increasing the temperature within the boundary layer. The wedge parameter significantly impacts flow stability, with higher \( \beta \) promoting smoother velocity profiles and reducing the tendency for boundary layer separation. Thermal radiation increases the thermal boundary layer thickness and decreases heat transfer rate at the wall. The numerical results are validated against existing literature benchmarks, demonstrating excellent agreement and confirming the accuracy and reliability of the solution method.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

V. M. Falkner and S. W. Skan, Some approximate solutions of the boundary layer equations. Philosophical Magazine, 1931.

J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 2006.

Makinde, O. D. (2011). Thermodynamic second law analysis for a gravity driven non-Newtonian power-law liquid film along an inclined isothermal plate. Physica A: Statistical Mechanics and its Applications, 390(9), 1421–1428.

Postelnicu, A. (2004). Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. International Journal of Heat and Mass Transfer, 47(6–7), 1467–1472.

Cheng, C. Y. (2012). Soret and Dufour effects on heat and mass transfer in free convection about a vertical flat plate in a porous medium with variable surface temperature, International Communications in Heat and Mass Transfer, 39(4), 495–499.

R.Kandasamy, I. Hashim, Muhaimin, Seripah, Nonlinear MHD mixed convection flow and heat and mass transfer of first order chemical reaction over a wedge with variable viscosity in the presence of suction or injection, Theoret.Appl.Mech., 34(2),(2007)111–134.

K.V.Prasad, P.S. Datti, K. Vajravelu, MHD mixed convection flow over a permeable non-isothermal wedge, Journal of King Saud University Science, 25,(2013), 313–324.

Anuar Ishak, RoslindaNazar, IoanPop, MHD boundary layer flow of a micropolar fluid past a wedge with constant wall heat flux, Commun. Nonlinear Sci. Numer. Simul. 14(2009)1091–18.

Pal, D. (2010). Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady stretching permeable surface, Communications in Nonlinear Science and Numerical Simulation, 15(6), 1353–1364.

Seth, G. S., Ansari, M. S., & Nandkeolyar, R. (2011). Heat and mass transfer effects on MHD flow past a moving vertical plate with thermal radiation and chemical reaction, International Journal of Applied Mathematics and Mechanics, 7(1), 52–69.

Chamkha, A. J., & Aly, A. M. (2010). MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption, Chemical Engineering Communications, 198(3), 425–441.

Mahmoud, M. A. A. (2009). Thermal radiation effects on MHD unsteady free convection flow past a vertical plate with temperature-dependent viscosity,Canadian Journal of Physics, 87(9), 963–973.

Gebhart, B., & Pera, L. (1971). The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, International Journal of Heat and Mass Transfer, 14(12), 2025–2050.

Seddeek, M. A. (2002). Effects of variable viscosity on hydromagnetic boundary layer flow past a continuously moving surface with radiation and chemical reaction, International Communications in Heat and Mass Transfer, 29(7), 951–959.

White, F. M. (2006). Viscous Fluid Flow (3rd ed.). McGraw-Hill, New York.

Blasius, H. (1908). Grenzschichten in Fl¨ussigkeiten mit kleiner Reibung, Zeitschrift für Mathematik und Physik, 56, 1–37.

Spalding, D. B. (1961). Mass transfer through laminar boundary layers—1. The velocity boundary layer, International Journal of Heat and Mass Transfer, 2(1), 15–32.

Falkner, V. M. and Skan, S. W. (1931). Some approximate solutions of the boundary-layer equations, Philosophical Magazine, 12(80), 865–896.

Cebeci, T., and Keller, H. B. (1971). Shooting and parallel shooting methods for solving the Falkner–Skan boundarylayer equation, Journal of Computational Physics, 7(2), 289–300.

Mahapatra, T. R. and Gupta, A. S. (2002). Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, 38(6), 517–521.

Alam, M. S., Rahman, M. M., and Samad, M. A. (2006). Dufour and Soret effects on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a porous medium, Nonlinear Analysis: Modelling and Control, 11(3), 217–226. doi:10.15388/NA.2006.11.3.14743

Gautam, A. K., Verma, A. K., Bhattacharyya, K., & Banerjee, A. (2020). Soret and Dufour effects on MHD boundary layer flow of non-Newtonian Carreau fluid with mixed convective heat and mass transfer over a moving plate, Pramana–J. Phys. 94(108), https://doi.org/10.1007/s12043-020-01984-z

Srinivasacharya, D., Mendu, U., & Venumadhav, K. (2015). MHD boundary layer flow of a nanofluid past a wedge, Procedia Engineering, 127, 1064–1070.

Ariel, P.D. (1994). 94:108 On hydromagnetic flow in a diverging channel, Journal of Engineering Mathematics, 28, 415–428. DOI: 10.1007/BF00051275

Publiée
2025-10-17
Rubrique
Mathematics and Computing - Innovations and Applications (ICMSC-2025)