On Neutrosophic Ideals of B-algebra
Abstract
This paper presents a comprehensive study of neutrosophic concepts in B-algebras, focusing on several types of neutrosophic ideals including neutrosophic ideals, neutrosophic near ideals, neutrosophic Ns-ideals, neutrosophic power ideals, and neutrosophic near power ideals. The paper establishes and proves multiple results, such as: every neutrosophic B-algebra is both a neutrosophic near ideal and a neutrosophic Ns-ideal; every neutrosophic ideal and every neutrosophic near ideal of a B-algebra is a neutrosophic Ns-ideal; every neutrosophic regular set in a B-algebra is a neutrosophic Ns-ideal; every neutrosophic B-algebra is also a neutrosophic power ideal; every neutrosophic ideal, near ideal, and regular set in a B-algebra is a neutrosophic power ideal; every neutrosophic power ideal is a neutrosophic Ns-power ideal; and similarly, every neutrosophic B-algebra, near ideal, and regular set is a neutrosophic Ns-power ideal. In addition to these findings, the paper explores the structural relationships and properties among these different types of neutrosophic ideals, providing a deeper understanding of their significance within the framework of B-algebras. These results contribute to the theoretical development of neutrosophic algebraic structures and may serve as a foundation for future applications in logic, information systems, and decision-making models involving indeterminacy.
Downloads
References
http://elib.mi.sanu.ac.rs/files/journals/mv/218/mv021204.pdf
2. Zadeh L A, Fuzzy set. Inform And Control.1965; 8(3): 338-353. https://www.sciencedirect.com/science/article/pii/S001999586590241X?via%3Dihub
3. Jun Y B, Roh E. H. Chinju and H. S. Kim. On Fuzzy B-algebras. Czechoslovak Math. J.2002;52(2): 375-384.
https://link.springer.com/article/10.1023/A:1021739030890
4. Ahn S S, Bang K. On fuzzy subalgebras in B-algebras. Communications of the Korean Mathematical Society. 2003; 18(3): 429-437. https://koreascience.or.kr/article/JAKO200311921888593.page
5. Senapati T, Bhowmik M, Pal M. Fuzzy closed ideals of B-algebras. International Journal of Computer Science, Engineering and Technology. 2011;1(10):669-673.
https://ijcset.net/docs/Volumes/volume1issue10/ijcset2011011011.pdf
6. Xiongtheyi Z, Sultan A, and Ahmed K. Soft Quantum B-Algebras and Fuzzy Soft Quantum B-Algebras. Journal of Mathematics.2021;2021(3):1-8. https://onlinelibrary.wiley.com/doi/10.1155/2021/3071765
7. Rasuli R, T-Fuzzy B-subalgebras and normal T-Fuzzy B-subalgebras of B-algebras. Int. J. Open Problems Compt. Math. 2022; 15(4):57-76. https://www.ijopcm.org/Vol/2022/4.6.pdf
8. Muralikrishna P, Vinodkumar R, Palani G. Cubic fuzzy β−ideals of β−algebras. Ital. J. Pure Appl. Math. 2022; (48): 806–813) https://ijpam.uniud.it/online_issue/202248/65%20Muralikrishna-Vinodkumar-Palani.pdf
9. Ma R V, Dicen, K. E and Belleza F.. Fuzzification of the Dual B-algebra. European Journal of Pure and Applied Mathematics. 2022; 15(4): 1957-1965. https://doi.org/.29020/nybg.ejpam.v15i4.4561
10. Dian K A, Noor H, Abdul R. M-Polar Fuzzy B-ideal of B-algebra, Cauchy –Jurnal Matematika Murni dan Aplikasi.2023; 8(2): 62-75. https://ejournal.uin-malang.ac.id/index.php/Math/article/view/20694
11. Royyan A, Noor H,Vira H. K. Multipolar Intuitionistic Fuzzy Ideal in B-Algebras. Cauchy –Jurnal Matematika Murni dan Aplikasi. 2022; 7(2): 293-301. https://ejournal.uin-malang.ac.id/index.php/Math/article/view/14003
12.Royyan A, Noor H, Vira H. K. Multipolar Intuitionistic Fuzzy Positive Implicative Ideal in B-Algebras. Cauchy- Jurnal Matematika Murni dan Aplikasi .2024; 9(1):26-35. https://doi.org/10.18860/ca.v9i1.23164
13. Atshan A A, Khalil S M. On fuzzy normal RHO-filters and usual RHO-filters of RHO-algebras. AIP Conf. Proc.2023; 2834, 080036: https://pubs.aip.org/aip/acp/article-abstract/2834/1/080036/2926079/On-fuzzy-normal-RHO-filters-and-usual-RHO-filters?redirectedFrom=fulltext
14. Atshan A A, Khalil S, On regular ρ–algebras with strongly ρ ideals in ρ–algebras, AIP Conf. Proc., 2834, 080004, (2023).https://pubs.aip.org/aip/acp/article-abstract/2834/1/080004/2926090/On-regular-algebras-with-strongly-ideals-in?redirectedFrom=fulltext
15. Smarandache F. A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neu-trosophic Set, Neutrosophic Probability. 6th edition. USA: American Research Press, 2007. https://fs.unm.edu/eBooks-otherformats.htm
16. Hasan M A. Abbas A N. Mahmood S, "On Soft α*-Open Sets and Soft Contra α*-Continuous Mappings in Soft Topological Spaces," J. Interdiscip. Math. 2021; 24: 729–734. https://doi.org/10.1080/09720502.2020.1861786
17. Mahmood S, Hassan A. "Applications of Fuzzy Soft ρ -Ideals in ρ-Algebras," Fuzzy Information and Engineering. 2018; 10(4), 467-475.
https://doi.org/10.1080/16168658.2020.1799703
18. Eidi J H, Hameed E M, Kider J R. Convex fuzzy distance between two convex fuzzy compact set. Journal of Interdisciplinary Mathematics. 2024, 27(4): 953–963. https://doi.org/10.47974/JIM-1916
19. Shuker K. Ulrazaq M. Abdul-Ghani S. Al-Musawi A. F. "σ-Algebra and σ-Baire in Fuzzy Soft Setting," Advances in Fuzzy Systems. 2018; 10, (2018). http://dx.doi.org/10.1155/2018/5731682
20. Jaber A L, Alallak H S, Eidi J H, Khalil S. New Class of Equivalence Classes of Neutrosophic Fuzzy Delta-Algebras, International Journal of Neutrosophic Science. 2025; 26(2): 11–19. https://www.americaspg.com/articleinfo/21/show/3694
21. Shaymaa F, Anas A H. Some Properties of Fuzzy Neutrosophic Generalized Semi Continuous Mapping and Alpha eneralized Continuous Mapping. Baghdad Science Journal. 2022;19(3): 536-541. https://bsj.uobaghdad.edu.iq/home/vol19/iss3/7/
22. Torki M M. Shuker K. "New Types of Finite Groups and Generated Algorithm to Determine the Integer Factorization by Excel," AIP Conf. Proc. 2020; 2290, 040020. https://doi.org/10.1063/5.0027691
23. Mahmood S. and Abbas N M. "Applications on New Category of the Symmetric Groups," AIP Conf. Proc. 2020; 2290, 040004. https://doi.org/10.1063/5.0027380
24. Mohammed S A, Eidi J H. New white method of parameters and reliability estimation for transmuted power function distribution. Baghdad Science Journal. 2022; 19(1): 77–83. https://doi.org/10.21123/bsj.2022.19.1.0077
Copyright (c) 2026 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



