On Neutrosophic Ideals of B-algebra

  • Shuker Khalil University of Basrah
  • Arkan Ajil Atshan

Abstract

This paper presents a comprehensive study of neutrosophic concepts in B-algebras, focusing on several types of neutrosophic ideals including neutrosophic ideals, neutrosophic near ideals, neutrosophic Ns-ideals, neutrosophic power ideals, and neutrosophic near power ideals. The paper establishes and proves multiple results, such as: every neutrosophic B-algebra is both a neutrosophic near ideal and a neutrosophic Ns-ideal; every neutrosophic ideal and every neutrosophic near ideal of a B-algebra is a neutrosophic Ns-ideal; every neutrosophic regular set in a B-algebra is a neutrosophic Ns-ideal; every neutrosophic B-algebra is also a neutrosophic power ideal; every neutrosophic ideal, near ideal, and regular set in a B-algebra is a neutrosophic power ideal; every neutrosophic power ideal is a neutrosophic Ns-power ideal; and similarly, every neutrosophic B-algebra, near ideal, and regular set is a neutrosophic Ns-power ideal. In addition to these findings, the paper explores the structural relationships and properties among these different types of neutrosophic ideals, providing a deeper understanding of their significance within the framework of B-algebras. These results contribute to the theoretical development of neutrosophic algebraic structures and may serve as a foundation for future applications in logic, information systems, and decision-making models involving indeterminacy.

Downloads

Download data is not yet available.

References

1. Neggers J, Kim H. On B-algebras. Mathematicki Vesnik.2002; 54(218):21–29.
http://elib.mi.sanu.ac.rs/files/journals/mv/218/mv021204.pdf
2. Zadeh L A, Fuzzy set. Inform And Control.1965; 8(3): 338-353. https://www.sciencedirect.com/science/article/pii/S001999586590241X?via%3Dihub
3. Jun Y B, Roh E. H. Chinju and H. S. Kim. On Fuzzy B-algebras. Czechoslovak Math. J.2002;52(2): 375-384.
https://link.springer.com/article/10.1023/A:1021739030890
4. Ahn S S, Bang K. On fuzzy subalgebras in B-algebras. Communications of the Korean Mathematical Society. 2003; 18(3): 429-437. https://koreascience.or.kr/article/JAKO200311921888593.page
5. Senapati T, Bhowmik M, Pal M. Fuzzy closed ideals of B-algebras. International Journal of Computer Science, Engineering and Technology. 2011;1(10):669-673.
https://ijcset.net/docs/Volumes/volume1issue10/ijcset2011011011.pdf
6. Xiongtheyi Z, Sultan A, and Ahmed K. Soft Quantum B-Algebras and Fuzzy Soft Quantum B-Algebras. Journal of Mathematics.2021;2021(3):1-8. https://onlinelibrary.wiley.com/doi/10.1155/2021/3071765
7. Rasuli R, T-Fuzzy B-subalgebras and normal T-Fuzzy B-subalgebras of B-algebras. Int. J. Open Problems Compt. Math. 2022; 15(4):57-76. https://www.ijopcm.org/Vol/2022/4.6.pdf
8. Muralikrishna P, Vinodkumar R, Palani G. Cubic fuzzy β−ideals of β−algebras. Ital. J. Pure Appl. Math. 2022; (48): 806–813) https://ijpam.uniud.it/online_issue/202248/65%20Muralikrishna-Vinodkumar-Palani.pdf
9. Ma R V, Dicen, K. E and Belleza F.. Fuzzification of the Dual B-algebra. European Journal of Pure and Applied Mathematics. 2022; 15(4): 1957-1965. https://doi.org/.29020/nybg.ejpam.v15i4.4561
10. Dian K A, Noor H, Abdul R. M-Polar Fuzzy B-ideal of B-algebra, Cauchy –Jurnal Matematika Murni dan Aplikasi.2023; 8(2): 62-75. https://ejournal.uin-malang.ac.id/index.php/Math/article/view/20694
11. Royyan A, Noor H,Vira H. K. Multipolar Intuitionistic Fuzzy Ideal in B-Algebras. Cauchy –Jurnal Matematika Murni dan Aplikasi. 2022; 7(2): 293-301. https://ejournal.uin-malang.ac.id/index.php/Math/article/view/14003
12.Royyan A, Noor H, Vira H. K. Multipolar Intuitionistic Fuzzy Positive Implicative Ideal in B-Algebras. Cauchy- Jurnal Matematika Murni dan Aplikasi .2024; 9(1):26-35. https://doi.org/10.18860/ca.v9i1.23164
13. Atshan A A, Khalil S M. On fuzzy normal RHO-filters and usual RHO-filters of RHO-algebras. AIP Conf. Proc.2023; 2834, 080036: https://pubs.aip.org/aip/acp/article-abstract/2834/1/080036/2926079/On-fuzzy-normal-RHO-filters-and-usual-RHO-filters?redirectedFrom=fulltext
14. Atshan A A, Khalil S, On regular ρ–algebras with strongly ρ ideals in ρ–algebras, AIP Conf. Proc., 2834, 080004, (2023).https://pubs.aip.org/aip/acp/article-abstract/2834/1/080004/2926090/On-regular-algebras-with-strongly-ideals-in?redirectedFrom=fulltext
15. Smarandache F. A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neu-trosophic Set, Neutrosophic Probability. 6th edition. USA: American Research Press, 2007. https://fs.unm.edu/eBooks-otherformats.htm
16. Hasan M A. Abbas A N. Mahmood S, "On Soft α*-Open Sets and Soft Contra α*-Continuous Mappings in Soft Topological Spaces," J. Interdiscip. Math. 2021; 24: 729–734. https://doi.org/10.1080/09720502.2020.1861786
17. Mahmood S, Hassan A. "Applications of Fuzzy Soft ρ -Ideals in ρ-Algebras," Fuzzy Information and Engineering. 2018; 10(4), 467-475.
https://doi.org/10.1080/16168658.2020.1799703
18. Eidi J H, Hameed E M, Kider J R. Convex fuzzy distance between two convex fuzzy compact set. Journal of Interdisciplinary Mathematics. 2024, 27(4): 953–963. https://doi.org/10.47974/JIM-1916
19. Shuker K. Ulrazaq M. Abdul-Ghani S. Al-Musawi A. F. "σ-Algebra and σ-Baire in Fuzzy Soft Setting," Advances in Fuzzy Systems. 2018; 10, (2018). http://dx.doi.org/10.1155/2018/5731682
20. Jaber A L, Alallak H S, Eidi J H, Khalil S. New Class of Equivalence Classes of Neutrosophic Fuzzy Delta-Algebras, International Journal of Neutrosophic Science. 2025; 26(2): 11–19. https://www.americaspg.com/articleinfo/21/show/3694
21. Shaymaa F, Anas A H. Some Properties of Fuzzy Neutrosophic Generalized Semi Continuous Mapping and Alpha eneralized Continuous Mapping. Baghdad Science Journal. 2022;19(3): 536-541. https://bsj.uobaghdad.edu.iq/home/vol19/iss3/7/
22. Torki M M. Shuker K. "New Types of Finite Groups and Generated Algorithm to Determine the Integer Factorization by Excel," AIP Conf. Proc. 2020; 2290, 040020. https://doi.org/10.1063/5.0027691
23. Mahmood S. and Abbas N M. "Applications on New Category of the Symmetric Groups," AIP Conf. Proc. 2020; 2290, 040004. https://doi.org/10.1063/5.0027380
24. Mohammed S A, Eidi J H. New white method of parameters and reliability estimation for transmuted power function distribution. Baghdad Science Journal. 2022; 19(1): 77–83. https://doi.org/10.21123/bsj.2022.19.1.0077
Published
2026-02-17
Section
Special Issue: Mathematics and applications