Unilateral Elliptic Problems with $L 1$−data in Anisotropic Weighted Sobolev Spaces
Abstract
In this note, we are interested in some results on the existence of entropy solution for quasilinear anisotropic unilateral elliptic problem of the type:
\begin{equation}\label{prbm1.0.0}
\left\{\begin{array}{ll}
-\sum_{i=1}^{N} \partial^{i} a_{i}(x, u, \nabla u)+\Phi(x, u, \nabla u)+H(x, u, \nabla u)=f \quad\text { in } \Omega \\\\
u \geq \varphi \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad\qquad \text { a.e. in } \Omega,
\end{array}\right.
\end{equation}
where $ f \in L^{1}(\Omega), $ The nonlinear terms $ \Phi(x, s, \nabla u) $ satisfy the sign and growth conditions, and $ H(x, s, \nabla u) $ verifies only the growth conditions.
Downloads
Copyright (c) 2026 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



