Unilateral Elliptic Problems with $L 1$−data in Anisotropic Weighted Sobolev Spaces

  • Ouidad AZRAIBI
  • Badr EL HAJI LABORATOIR LAMA, FEZ
  • Ibrahim EN-NAJI
  • Said Ait Dadda Alla

Abstract

In this note, we are interested in some results on the existence of entropy solution for quasilinear anisotropic unilateral elliptic problem of the type:

\begin{equation}\label{prbm1.0.0}
\left\{\begin{array}{ll}
-\sum_{i=1}^{N} \partial^{i} a_{i}(x, u, \nabla u)+\Phi(x, u, \nabla u)+H(x, u, \nabla u)=f \quad\text { in } \Omega \\\\
u \geq \varphi \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad\qquad \text { a.e. in } \Omega,
\end{array}\right.
\end{equation}
where $ f \in L^{1}(\Omega), $ The nonlinear terms $ \Phi(x, s, \nabla u) $ satisfy the sign and growth conditions, and $ H(x, s, \nabla u) $ verifies only the growth conditions.

Downloads

Download data is not yet available.
Published
2026-02-17
Section
Special Issue: Mathematics and applications