Asymptotics of Solutions to $p$-Laplacian Equations Involving Convection and Reaction Terms
Resumen
The purpose of this work is to investigate a nonlinear $p$-Laplacian equation that incorporates both convection and reaction effects. The model under consideration takes the form
$$
\displaystyle \mbox{div}(|\nabla U|^{p-2} \nabla U) + \lambda x\nabla(|U|^{q-1} U) + \theta U = 0 \quad \mbox{in} \quad \mathbb{R}^{N}, \\
%\displaystyle \left( |u'|^{p-2} u' \right)' + \frac{N-1}{r} |u'|^{p-2} u' + \lambda r(|u|^{q-1} u)' + \theta u = 0, \quad r > 0,
$$
with parameters $N \geq 1$, $p>2$, $q>1$, $\lambda>0$, and $\theta>0$.
Our main results concern the existence of global radial solutions, which are shown to be strictly positive under suitable assumptions. In addition, we examine the qualitative properties of these solutions and describe their asymptotic profile as $|x|\rightarrow\infty$.
Descargas
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



