Influence of anisotropic permeability on Brinkman–Darcy–Forchheimer flow through curved channels
Abstract
The analysis of fluid motion in curved channels embedded with porous structures is important for understanding transport phenomena in complex geometries. The study examines the steady, laminar flow of an incompressible fluid through a curved channel saturated with an anisotropic porous medium, highlighting the combined effects of channel curvature and directional permeability. The flow is generated by an azimuthal pressure gradient. The Brinkman–extended Darcy–Forchheimer model, which accounts for viscous shear, Darcy resistance, and inertial Forchheimer effects, is used to formulate the governing equations, which are solved numerically by using the spectral quasilinearization method (SQLM). An internal MATLAB program was employed to generate velocity and temperature profiles for various physical parameters. The analysis shows that increasing the anisotropic permeability ratio from $K = 0.5$ to $K = 2$ reduces peak velocity by 33% and raises central temperature by 28%. Similarly, as the channel transitions from a highly curved state from $\kappa = 1.25$ to $\kappa \to \infty$, peak velocity decreases by 70% and central temperature increases by 16%, reflecting the reduced influence of centrifugal forces. Unlike isotropic models, this work quantifies how anisotropy and non-Darcy effects interact with curvature, offering predictive insights for porous flow systems, biomedical devices, and heat exchangers.
Downloads
References
Goldstein, S., Modern Developments in Fluid Dynamics: An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes, Vol. 2, Clarendon Press, Oxford (1938).
So, R. M., Entry flow in curved channels, J. Fluid Mech., 98(2), 305–310 (1976).
Abdalbagi, M., Micropolar flow and heat transfer within a permeable channel using the successive linearization method, Open Physics, 21(1), (2023). doi: 10.1515/phys-2023-0177.
Ahmad, S., Ashraf, M., Ali, K., and Nisar, K., Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls, Int. J. Nonlinear Sci. Numer. Simul., 23(5), 761–775, (2022). doi: 10.1515/ijnsns-2020-0017.
Alharbey, R., Mondal, H., and Behl, R., Spectral quasi-linearization method for non-Darcy porous medium with convective boundary condition, Entropy, 21, 838, (2019). doi: 10.3390/e21090838.
Boodoo, C., Micropolar fluid flows past a porous shell: A model for drug delivery using porous microspheres, Eur. J. Eng. Technol. Res., 9(3), 1–7, (2024). doi: 10.24018/ejeng.2024.9.3.3162.
Chaithra, N., and Hanumagowda, B. N., Effect of micropolar fluid to study the characteristics of squeeze film between porous curved annular plates, Communications in Mathematics and Applications, 14(4), 1469–1478, (2023).
Humane, P., Patil, V., Patil, A., and Shamshuddin, D. M., Buongiorno modelled nanoliquid consequence of thermal and solutal convection on the magneto-micropolar fluid inside an inclined porous stretching device, Journal of Nanofluids, 12, 211–222, (2023). doi: 10.1166/jon.2023.1949.
Ishaq, M., Rehman, S. U., Riaz, M. B., and Zahid, M., Hydrodynamical study of couple stress fluid flow in a linearly permeable rectangular channel subject to Darcy porous medium and no-slip boundary conditions, Alexandria Engineering Journal, 91, 50–69, (2024). doi: 10.1016/j.aej.2024.01.066.
Jalili, B., Azar, A. A., Jalili, P., and Ganji, D. D., Analytical approach for micropolar fluid flow in a channel with porous walls, Alexandria Engineering Journal, 79, 196–226, (2023). doi: 10.1016/j.aej.2023.08.015.
Berman, A.S., Laminar flow in channels with porous walls, J. Appl. Phys., Vol. 24, pp. 1232–1235 (1953).
Kuznetsov, A., Avramenko, A., Flow in a curved porous channel with a rectangular cross section, J. Porous Media 11, 241–246, (2007).
Okechi, N. F., Asghar, S., Fluid motion in a corrugated curved channel, Eur. Phys. J. Plus 134, (2019).
Yadav, P. K., Yadav, N., A study on the flow of couple stress fluid in a porous curved channel, Comput. Math. Appl. 152, 1–15, (2023).
Sharma, S., Sharma, K., Unsteady flow of couple stress fluid through an anisotropic porous medium with time-dependent boundary conditions, J. Porous Media 22, 837–850, (2019).
Jaiswal, S., Yadav, P., Physics of generalized couette flow of immiscible fluids in anisotropic porous medium, Int. J. Mod. Phys. B 38, (2023).
Maiti, S., Das, S., Numerical analysis of couple stress fluid flow in an anisotropic porous medium with heat generation, Int. J. Numer. Methods Heat Fluid Flow 30, 28–45, (2020).
Prakash, V., Nanda, S., Hydrodynamic flow of couple stress fluid through an anisotropic porous medium with suction and injection, Appl. Math. Model. 79, 501–516, (2020).
Vijaya Sree, R., Narla, V. K., Impact of anisotropic permeability on micropolar fluid dynamics and heat transfer in porous channels, East Eur. J. Phys. 4, 107–121, (2024). doi:10.26565/2312-4334-2024-4-10
Vijaya Sree, R., Narla, V. K., Babu, K. S., A biomagnetic couple stress fluid flow in an anisotropic porous channel with stretching walls, East Eur. J. Phys. 4, 159–176, (2024). doi:10.26565/2312-4334-2024-4-15
Karmakar, T., Raja Sekhar, G., Effect of anisotropic permeability on fluid flow through composite porous channel, J. Eng. Math. 100, 33–51, (2016).
Karmakar, T., Raja Sekhar, G. P., A note on flow reversal in a wavy channel filled with anisotropic porous material, Proc. R. Soc. A: Math. Phys. Eng. Sci. 473, 20170193, (2017).
Nakayama, A., Kuwahara, F., Umemoto, T., Hayashi, T., Heat and fluid flow within an anisotropic porous medium, J. Heat Transfer 124, 746–753, (2002).
Pandey, A.K., Gupta, T., Mixed convective flow of Ag–H2O magnetic nanofluid over a curved surface with volumetric heat generation and temperature-dependent viscosity, Heat Transfer Engineering, 42(24), 2204685, (2021). doi:10.1002/htj.22227
Bartwal, P., Pandey, A.K., Upreti, H., Impact of anisotropic slip on magnetized tangent hyperbolic fluid flow over a rotating disk: A Legendre wavelet collocation method, International Communications in Heat and Mass Transfer, 159, 108081, (2024). doi:10.1016/j.iche.2024.108081
Upreti, H., Pandey, A., Kumar, M., Makinde, O.D., Darcy–Forchheimer flow of CNTs–H2O nanofluid over a porous stretchable surface with Xue model, International Journal of Modern Physics B, 37(5), 2350018, (2023). doi:10.1142/S0217979223500182
Prakash, J., Melting heat transfer and irreversibility analysis in Darcy–Forchheimer flow of Casson fluid modulated by EMHD over cone and wedge surfaces, Journal of Thermal Analysis and Calorimetry, 145(2), 1065–1077, (2024). doi:10.1007/s10973-024-12085-4
Aich, R., Impact of heat transfer in a duct composed of anisotropic porous media, Int. J. Heat Mass Transf. 173, 121302, (2024). doi:10.1016/j.ijheatmasstransfer.2021.121302.
Barletta, A., Linearly unstable forced and free flow in an anisotropic porous medium, Int. J. Heat Mass Transf. 173, 121302, (2024). doi:10.1016/j.ijheatmasstransfer.2024.121302.
Mudugamuwa, A., Periodic flows in microfluidics, Small 20(24), 2204685, (2024). doi:10.1002/smll.202404685.
Guo, W., Effect of pore-scale anisotropic and heterogeneous structures on gas flow in porous media, Materials 10(7), 175, (2025).
Avramenko, A.A. and Kuznetsov, A.V., Instability of a slip flow in a curved channel formed by two concentric cylindrical surfaces, European Journal of Mechanics B/Fluids 28(6), 722–727, (2009). doi:10.1016/j.euromechflu.2009.06.003.
Karmakar, T., Reza, M., Raja Sekhar, G. P., Forced convection in a fluid saturated anisotropic porous channel with isoflux boundaries, Phys. Fluids 31, 117109, (2019).
Norouzi, M., Shoghi, M. R., A numerical study on miscible viscous fingering instability in anisotropic porous media, Phys. Fluids 26, 084102, (2014). doi:10.1063/1.4891228.
Karmakar, M. R. T., Alam, M., Raja Sekhar, G. P., Couette-Poiseuille flow in a fluid overlying an anisotropic porous layer, Comput. Math. Appl. 151, 346–358, (2023).
Ghosh, N., Karmakar, T., Raja Sekhar, G. P., Application of conformal mapping to two-dimensional flows in an anisotropic aquifer, Indian J. Pure Appl. Math. 53, 617–626, (2022).
Karmakar, T., Raja Sekhar, G. P., Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed, Phys. Fluids 30, 043604, (2018).
Pramanik, S., Karmakar, T., Couette-Poiseuille flow of variable viscosity in a multilayered channel partially filled with a homogeneous anisotropic porous layer: Role of the glycocalyx in attenuating shear stress on endothelial cells, Phys. Fluids 36, 033615, (2024).
Rees, L. S. D. A. S., Postelnicu, A., The onset of convection in an inclined anisotropic porous layer with oblique principal axes, Transp. Porous Media 62, 139–156, (2006).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



