On certain classes of Univalent Functions associated with Riemann Fractional Derivative

  • N. Ravikumar JSS College of Arts, Commerce and Science, Mysuru
  • H. S. Roopa JSS College of Arts, Commerce and Science, Mysuru
  • Siva Kota Reddy Polaepalli JSS Science and Technology University http://orcid.org/0000-0003-4033-8148

Abstract

In this paper, by making use of the concepts of fractional calculus, we define the subclass $S(r,\lambda,\delta,t)$ of analytic function by using $\Omega^{\delta}\mathfrak{f(\tau)}$. For function belonging to this class, we obtain co-efficient estimates, inclusions relations, extreme points and some more properties.

Downloads

Download data is not yet available.

Author Biographies

N. Ravikumar, JSS College of Arts, Commerce and Science, Mysuru

Associate Professor and Head, PG Department of Mathematics 

H. S. Roopa, JSS College of Arts, Commerce and Science, Mysuru

Assistant Professor, PG Department of Mathematics

Siva Kota Reddy Polaepalli, JSS Science and Technology University

Professor, Departmnet of Mathematics, JSS Science and Technology, Mysuru-570 006, India

References

\bibitem{1} B.A.Frasin, \textit{On certain subclasses of analytic functions associated with Poisson distribution series}. Acta Universitatis Sapientiae, Mathematica, 2019;11(1):78-86.
\bibitem{2} B.A.Frasin, Tariq Al-Hawary and Feras Yousef,\textit{ Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions}, Afrika Matematika, 30 (2019): 223-230.
\bibitem{3} K.S.Padmanabhan, \textit{On certain classes of starlike functions in the unit disk}, J. Indian Math, Soc 32, no. 1-2 (1968): 89-103.
\bibitem{4} M.L.Mogra, \textit{On a class of starlike functions in the unit disc I}, J. Indian Math, Soc 40 (1976): 159-161.
\bibitem{5} S.Owa, \textit{On certain classes of univalent functions in the unit disk}, Kyungpook Mathematical Journal, 24 (1984).
\bibitem{6} S.Owa and H. M. Srivatsava, \textit{Univalent and starlike generalized hypergeometric functions}, Canadian Journal of Mathematics, vol.39, no.5,(1987),pp.1057-1077.
\bibitem{7} S. Owa, \textit{On the distortion theorems I}, Kyungpook Math. J., 18(1978), 53-59.
\bibitem{8} Y.Komato, \textit{On analytic prolongation of a family of operators}, Mathematica(Cluj),39(55), 1990,141-145.
Published
2026-02-04
Section
Research Articles