https://periodicos.uem.br/ojs/index.php/BSocParanMat/issue/feedBoletim da Sociedade Paranaense de Matemática2025-09-01T18:12:49+00:00Marcelo Moreira Cavalcantibspm@uem.brOpen Journal Systems<p><a href="/ojs/index.php/BSocParanMat" target="_self"><img src="/ojs/public/site/images/admin/homeHeaderLogoImage_en_US.gif" alt=""></a></p> <p><em>Boletim da Sociedade Paranaense de Matemática</em>, ISSN 0037-8712 (print) and ISSN 2175-1188 (on-line), published bimonthly by the Sociedade Paranaense de Matemática-SPM. The journal publishes high-level articles in all areas of Mathematics. <strong>Indexed in:</strong> Zentralblatt, MathSciNet (AMS), DOAJ, CISTI, Latindex, Base Bielefeld, Crossref search, SCOPUS, Emerging Sources Citation Index (ESCI) <strong>Web Of Science</strong>. <br><br></p>https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/77836E Explicit Class‑Field Generation via Chains of Modular Polynomials2025-09-01T18:12:49+00:00Mohammed EL BARAKAmohammed.elbaraka5@usmba.ac.ma<p>We introduce an augmented Ihara zeta function for supersingular<br>$\ell$‑isogeny graphs that records both the degree label and the<br>orientation determined by dual isogenies. A Bass–Hashimoto style<br>determinant formula is proved, and we show that the resulting zeta<br>function factors as the characteristic polynomial of the Hecke operator<br>$T_{\ell}$ acting on weight‑$2$ cusp forms of level~$p$. Deligne’s<br>bound on Hecke eigenvalues then yields a \emph{uniform Ramanujan<br>property} for supersingular isogeny graphs with any prime<br>$\ell<p/4$. We extend the zeta formalism to non‑regular ordinary<br>\emph{isogeny volcanoes}, derive a rationality result, and relate the<br>dominant pole to the volcano height. Finally, explicit cycle‑counting<br>formulas lead to an equidistribution theorem for cyclic isogeny chains,<br>confirmed by numerical experiments for primes $p\le 1000$ and<br>$\ell\in\{2,3,5\}$.</p>2025-08-13T01:54:50+00:00Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática