Boletim da Sociedade Paranaense de Matemática https://periodicos.uem.br/ojs/index.php/BSocParanMat <p><a href="/ojs/index.php/BSocParanMat" target="_self"><img src="/ojs/public/site/images/admin/homeHeaderLogoImage_en_US.gif" alt=""></a></p> <p><em>Boletim da Sociedade Paranaense de Matemática</em>, ISSN 0037-8712 (print) and ISSN 2175-1188 (on-line), published bimonthly by the Sociedade Paranaense de Matemática-SPM. The journal publishes high-level articles in all areas of Mathematics. <strong>Indexed in:</strong>&nbsp;Zentralblatt, MathSciNet (AMS), DOAJ, CISTI, Latindex, Base Bielefeld, Crossref search, SCOPUS, Emerging Sources Citation Index (ESCI)&nbsp;<strong>Web Of Science</strong>.&nbsp;<br><br></p> en-US <p>When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).</p><p>The journal utilize the <a href="https://creativecommons.org/licenses/by/4.0/">Creative Common Attribution (CC-BY 4.0)</a>.</p><p> </p> bspm@uem.br (Marcelo Moreira Cavalcanti) bspm@uem.br (Executive Editor - Dr. Edilson Damasio) Wed, 13 Aug 2025 00:00:00 +0000 OJS 3.1.2.1 http://blogs.law.harvard.edu/tech/rss 60 E Explicit Class‑Field Generation via Chains of Modular Polynomials https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/77836 <p>We introduce an augmented Ihara zeta function for supersingular<br>$\ell$‑isogeny graphs that records both the degree label and the<br>orientation determined by dual isogenies. A Bass–Hashimoto style<br>determinant formula is proved, and we show that the resulting zeta<br>function factors as the characteristic polynomial of the Hecke operator<br>$T_{\ell}$ acting on weight‑$2$ cusp forms of level~$p$. Deligne’s<br>bound on Hecke eigenvalues then yields a \emph{uniform Ramanujan<br>property} for supersingular isogeny graphs with any prime<br>$\ell&lt;p/4$. We extend the zeta formalism to non‑regular ordinary<br>\emph{isogeny volcanoes}, derive a rationality result, and relate the<br>dominant pole to the volcano height. Finally, explicit cycle‑counting<br>formulas lead to an equidistribution theorem for cyclic isogeny chains,<br>confirmed by numerical experiments for primes $p\le 1000$ and<br>$\ell\in\{2,3,5\}$.</p> Mohammed EL BARAKA Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática http://creativecommons.org/licenses/by/4.0 https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/77836 Wed, 13 Aug 2025 01:54:50 +0000