Existence results for some nonlinear degenerate problems in the anisotropic spaces

Abstract

Our goal in this study is to prove the existence of solutions for the following nonlinear anisotropic degenerate elliptic problem:
- \partial_{x_i} a_i(x,u,\nabla u)+ \sum_{i=1}^NH_i(x,u,\nabla u)= f- \partial_{x_i} g_i \quad \mbox{in} \ \ \Omega,
where for $i=1,...,N$ $ a_i(x,u,\nabla u)$ is allowed to degenerate with respect to the unknown u, and $H_i(x,u,\nabla u)$ is a nonlinear term without a sign condition. Under suitable conditions on $a_i$ and $H_i$, we prove the existence of weak solutions.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

Author Biographies

Mohamed Boukhrij, Sidi Mohamed Ben Abdellah University

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

Benali Aharrouch, Sidi Mohamed Ben Abdellah University

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

Jaouad Bennouna, Sidi Mohamed Ben Abdellah University

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

Ahmed Aberqi, Sidi Mohamed Ben Abdellah University

Sidi Mohamed Ben Abdellah University, National School of Applied Sciences Fez,Morocco

References

Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).

C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).

A. Alvino, M.F. Betta, and A. Mercaldo, Comparison principle for some classes of nonlinear elliptic equations. J. Differential Equations 249, 3279-3290, (2010).

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results. Differential Integral Equations 21, 401-419, (2008).

Bendahmane M, Langlais M, Saad M, On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease. Nonlinear Analysis, 54(4):617-636, (2003).

M. F. Betta, A. Mercaldo F. Murat c, M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure. J. Math. Pures Appl. 82, 90-124, (2003).

Boccardo L, Gallouet T, Marcellini P, Anisotropic equations in L1. Differential and Integral Equations, 9: 209-212, (1996).

L. Boccardo, T. Gallouet, JL. Vasquez, Nonlinear elliptic equations in RN without restrictions on the data. Journal of Differential Equations, 105(2):334-363, (1993)

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581-597, (1992).

L. Boccardo, D. Giachetti, J. I. Diaz and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differential Equations 106, no. 2, 215-237, (1993).

M. Bojowald, H H. Hernandez, H A. Morales Tecotl, Perturbative degrees of freedom in loop quantum gravity: anisotropies. Classical Quantum Gravity 10: 3491-3516, (2006).

G. Bottaro and M. Marina, Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati, Boll. Un. Mat. Ital. 8 , 46-56, (1973).

H. Bresis, FE. Browder, Some properties of higher order Sobolev spaces, J. Math pures et appli. 61, 245-259, (1982).

A. Dall’Aglio, Approximated solutions of equations with L1 data. Application to the Hconvergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (4) 170, 207-240, (1996).

T. Del Vecchio and M. M. Porzio , Existence results for a class of non- coercive Dirichlet problems, Ricerche Mat. 44 (1995), 421-438 (1996).

R. Di Nardo , F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations. Arch. Math. 102, 141-153, (2014).

R. Di Nardo , F. Feo , and O. Guide , Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differential Equations 18, 433–458, (2013).

I. Fragala, F. Gazzola, and B. Kawohl , Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincare Anal. Non Linaire 21, 715-734, (2004)

J. L. Lions; Quelques methodes de resolution des problemes aux limites non lineaires. Dunod et Gauthier-Villars, Paris, (1969).

F. Murat. Solutions renormalizadas de edp elipticas no lineales. Publ. Laboratoire d’Analyse Numrique, Univ. Paris 6, R 93023, (1993).

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura Appl. (4) 17, 143-172,(1999).

J. M. Rakotoson, Existence of bounded solutions of some degenerate quasilinear elliptic equations, Comm. Partial Differential Equations 12 (6), 633-676, (1987).

M. Troisi , Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18 , 3-24, (1969).

J. Vetois, A priori estimates for solutions of anisotropic elliptic equations. Nonlinear Analysis 71(9): 3881-3905, (2009).

W. Zou, F. Li, Existence of solutions for degenerate quasilinear elliptic equations. J.Nonlinear Analysis 73 3069-3082, (2010)

Published
2020-10-11
Section
Articles