Design and analysis of a faster King-Werner-type derivative free method

  • J. R. Sharma Sant Longowal Institute of Engineering and Technology
  • Ioannis K. Argyros Cameron University
  • Deepak Kumar Sant Longowal Institute of Engineering and Technology

Abstract

We introduce a new faster  King-Werner-type derivative-free method for solving nonlinear equations. The local as well as semi-local  convergence analysis is presented under weak center Lipschitz and Lipschitz conditions. The convergence order as well as the convergence radii are also provided. The radii are compared to the corresponding ones from similar methods. Numerical examples further validate the theoretical results.

Downloads

Download data is not yet available.

References

Argyros, I. K., Computational Theory of Iterative Methods. Series; Studies in Computational Mathematics. 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, 2007.

Argyros, I. K., Covergence and Applications of Newton-type Iterations, Springer-Verlag, New York, 2008.

King, R. F., Tangent methods for nonlinear equations, Numer. Math. 18, 298-304, (1972). https://doi.org/10.1007/BF01404680

Gutierrez, J. M., Hernandez, M. A., A family of Chebyshev-Halley type methods in Banach spaces, Bull. Aust. Math. Soc. 55, 113-130, (1997). https://doi.org/10.1017/S0004972700030586

Hernandez, M. A., Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41, 433-455, (2001). https://doi.org/10.1016/S0898-1221(00)00286-8

Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., A. Karami and A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math. 233, 2002-2012, (2010). https://doi.org/10.1016/j.cam.2009.09.035

Grau-Sanchez, M., Grau, A., Noguera, M., Ostrowski type methods for solving systems of nonlinear equations, Appl. Math. Comput. 218, 2377-2385, (2011). https://doi.org/10.1016/j.amc.2011.08.011

Darvishi, M. T., Some three-step iterative methods free from second order derivative for finding solutions of systems of nonlinear equations, Int. J. Pure Appl. Math. 57, 557-573, (2010).

Ezquerro, J. A., Grau-Sanchez, M., Hernandez, M. A., Solving non-differentiability equations by a new one point iterative method with memory, J. Complexity 28, 48-58, (2012). https://doi.org/10.1016/j.jco.2011.06.002

Magre˜n'an, A. A., A new tool to study real dynamics: The convergence plane, Appl. Math. Comput. 248, 215-224, (2014). https://doi.org/10.1016/j.amc.2014.09.061

Ezquerro, J. A., Hernandez, M. A., Enlarging the domain of starting points for Newton's method under center conditions on the first Fr'echet-derivative, J. Complexity 33, 89-106, (2016). https://doi.org/10.1016/j.jco.2015.09.007

Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., Stable high-order iterative methods for solving nonlinear models, Appl. Math. Comput. 303, 70-88, (2017). https://doi.org/10.1016/j.amc.2017.01.029

Cordero, A., Ezquerro, J. A., Hernandez-Veron, M. A., Torregrosa, J.R., On the local convergence of fifth-order iterative method in Banach spaces, Appl. Math. Comput. 251, 396-403, (2015). https://doi.org/10.1016/j.amc.2014.11.084

Jaiswal, J. P., Semilocal convergnece of an eighth-order method in Banach spaces and its computational efficiency, Numer. Algor. 71, 933-951, (2016). https://doi.org/10.1007/s11075-015-0031-5

Narang, M., Bhatia, S., Kanwar, V., New two-parameter Chebyshev-Halley-like family of fourth and sixth-order methods for systems of nonlinear equations, Appl. Math. Comput. 275, 394-403, (2016). https://doi.org/10.1016/j.amc.2015.11.063

Sharma, J. R., Arora, H., Improved Newton-like methods for solving systems of nonlinear equations, SeMA 74, 147-163 (2017). https://doi.org/10.1007/s40324-016-0085-x

Sharma, J. R., Sharma, R., Bahl, A., An improved Newton-Traub composition for solving systems of nonlinear equations, Appl. Math. Comput. 290, 98-110, (2016). https://doi.org/10.1016/j.amc.2016.05.051

Soleymani, F., Lotfi, T., Bakhtiari, P., A multi-step class of iterative methods for nonlinear systems, Optim. Lett. 8, 1001-1015, (2014). https://doi.org/10.1007/s11590-013-0617-6

Argyros, I. K., Ren, H., On the convergence of efficient King-Werner-type methods of order 1 + √ 2, J. Comput. Appl. Math. 285, 169-180, (2015). https://doi.org/10.1016/j.cam.2015.02.021

Werner, W., Some supplementary results on the 1 + √ 2 order method for the solution of nonlinear equations, Numer. Math. 38, 383-392, (1982). https://doi.org/10.1007/BF01396439

Ren, H., Argyors, I. K., On the convergence of King-Werner-type methods of order 1 + √ 2 free of derivative, Appl. Math. Comput. 256, 148-159, (2015). https://doi.org/10.1016/j.cam.2015.02.021

Werner, W., Uber ein Verfahren der Ordung 1 + √ 2 zur Nullstellenbestimmung, Numer. Math. 32, 333-342, (1979). https://doi.org/10.1007/BF01397005

McDougall, T. J., Wotherspoon, S.J., A simple modification of Newton's method to achieve convergence of order 1+√ 2, Appl. Math. Lett. 29, 20-25, (2014).

Argyros, I. K., Cho, Y. J., Hilout, S., Numerical Methods for Equations and Its Applications, CRC Press, New York, 2012. https://doi.org/10.1201/b12297

Weerakoon, S., Fernando, T. G. I., A variant of Newton's method with accelerated third order convergence, Appl. Math. Lett. 13, 87-93, (2000). https://doi.org/10.1016/S0893-9659(00)00100-2

Cordero, A., Torregrosa, J. R., Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput. 199, 686-698, (2007). https://doi.org/10.1016/j.amc.2007.01.062

Published
2021-12-20
Section
Articles