Existence of fixed points in G-metric spaces

  • V. Srinivas Chary Icfai Foundation for Higher Education
  • G. Sudhaamsh Mohan Reddy Icfai Foundation for Higher Education https://orcid.org/0000-0002-3828-5852
  • D. Srinivasa Chary College of Agriculture
  • Stojan Radenovic Ton Duc Thang University

Abstract

In this manuscript, we provide some new results for the existence of fixed points for a certain contractive condition of Geraghty type in the setting of partially ordered $G$-metric space. Also, we provide an example to illustrate the usability of results. Our results generalize or extend many well known results in the literature.

Downloads

Download data is not yet available.

Author Biographies

V. Srinivas Chary, Icfai Foundation for Higher Education

Faculty of Science and Technology

G. Sudhaamsh Mohan Reddy, Icfai Foundation for Higher Education

Faculty of Science and Technology

D. Srinivasa Chary, College of Agriculture

Department of Statistics and Mathematics

Stojan Radenovic, Ton Duc Thang University

Faculty of Mathematics and Statistics

References

M. Abbas, T. Nazir, and S. Radenovi´c, Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces, Appl. Math. Comput. 218 (18), 9883-9395, (2012). DOI: https://doi.org/10.1016/j.amc.2012.03.022

M. Abbas, Azhar Hussain, Branislav Popovi´c and Stojan Radenovi´c, Istratescu-Susuki-Cir´ı-type fixed points results in the framewoek of G-metric spaces, J. Nonlinear Sci. Appl. 9, 6077-6095, (2016). DOI: https://doi.org/10.22436/jnsa.009.12.15

I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed point theory appl. 17, (2010). DOI: https://doi.org/10.1155/2010/621469

H. Aydi, Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces , arXiv preprint arXiv:1102.5493. (2011). DOI: https://doi.org/10.1186/1687-1812-2011-44

S. Chandok, Some fixed point theorems for (α, β)-admissible geraghty type contractive mappings and related results, Math. Sci. 9, 127–135, (2015). DOI: https://doi.org/10.1007/s40096-015-0159-4

B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84(4), 329-336, (1994).

M. E. Gordji, H. Baghani and G. H. Kim, A fixed point theorem for contraction type maps in ordered metric spaces and application to ordinary differential equations, Discrete Dynamics Nature Soc. (2012). DOI: https://doi.org/10.1186/1687-1812-2012-74

M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40(2), 604-608, (1973). DOI: https://doi.org/10.1090/S0002-9939-1973-0334176-5

Hamid Faraji, Dragana Savi´c and S. Radenovi´c, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Aximoms 8(34), 2019. DOI: https://doi.org/10.3390/axioms8010034

G. Jungck, Compatible mappings and common fixed points(2), Internat. J. Math. and Math. Sci. 11(2), 285-288, (1988). DOI: https://doi.org/10.1155/S0161171288000341

G. Jungck and B. E. Rhoades, Fixed point for set valued functions without continuity, Internat. J. of Pure and Applied Mathematics. 29(3), 227-238, (1998).

R. Kannan, On certain sets and fixed point theorems, Roum. Math. Pure Appl. 14, 51-54, (1969).

R. Kannan, Some results on fixed points- II, American Math. Monthly, 76, 406, (1969). DOI: https://doi.org/10.2307/2316437

Ljiljana Gajic, Zoran Kadelburg, Stojan Radenovi´c, Gp-metric spaces symmetric and asymmetric, Scientific Publications of the State University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech. 9(1), 37-46, (2017). DOI: https://doi.org/10.5937/SPSUNP1701037G

Ljubomir Ciric, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Beograd, Serbia, (2003).

Mujahid Abbas, Talat Nazir, Stojan Radenovi´c, Some periodic point results in generalized metric space, Applied Mathematics and Computation, 217 4094-4099, (2010). DOI: https://doi.org/10.1016/j.amc.2010.10.026

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7(2), 289-297, (2006).

B. E. Rhoades, A fixed point theorem for generalized metric spaces,Internat. J. Math. and Math. Sci. 19(3), 457-460, (1996). DOI: https://doi.org/10.1155/S0161171296000658

G. S. M. Reddy, A common fixed point theorem on complete G-metric spaces, Internat. J. Pure Appl. Math. 118(2), 195-202, (2018).

S. Sessa On a weakly commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32(46), 149-153, (1982).

R. K. Sharma, V. Raich and C.S. Chauhan, On generalization of Banach contraction principle in partially ordered metric spaces, Global J. Pure Appl. Math. 13(6), 2213-2234, (2017).

Stojan Radenovic, Remarks on some recent coupled coincidence point results in symmetric G-metric spaces, Journal of Operators, (2013). DOI: https://doi.org/10.1155/2013/290525

Zeid I. Al-Muhiameed and M. Bousselsal, Common fixed point theorem for four maps in partially ordered metric spaces, Int. J. Math. Anal. 7(22), 1051-1058, (2013). DOI: https://doi.org/10.12988/ijma.2013.13105

G. S. M. Reddy, Generalization of contraction principle on G-metric spaces, Global J. Pure Appl. Math. 14(9), 1177-1283, (2018).

G. S. M. Reddy, Fixed point theorems of contractions of G-metric Spaces and property ’P’ in G-Metric spaces, Global J. Pure Appl. Math. 14(6), 885-896, (2018).

G. S. M. Reddy, Fixed Point Theorems for (ε, λ)-Uniformly Locally Generalized Contractions, Global J. Pure Appl. Math. 14(9), 1177-1183, (2018).

Ravi P. Agarwal, Zoran Kadelburg, Stojan Radenovi´c, On coupled fixed point results in asymmetric G-metric spaces, Journal of Inequalities and Applications, 528, (2013). DOI: https://doi.org/10.1186/1029-242X-2013-528

Ravi P. Agarwal, Erdal Karapinar, Donal O’Oregan, Antonio Francisco Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer International Publishing Switzerland, (2015).

Vesna Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, (2019). DOI: https://doi.org/10.1007/978-3-030-22591-9

V. Srinivas Chary, G. Sudhaamsh Mohan Reddy, Fixed Point Results for Almost ZG-contraction via simulation functions in G-metric spaces, International Journal of Control and Automation, 12, 6, 608-615, (2019).

V. Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Huseyin Isik and Aydi Hassen, Some fixed point theorems for modified JS-G-contractions and an application to integral equation, Journal of Applied Mathematics and Informatics, 38, 5-6, 507-518, (2020).

V. Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Huseyin Isik and Aydi Hassen, Some fixed point theorems on α-β-G-complete G-metric spaces, Carpathian Mathematical Publications, 13, 1, 58-67, (2021). DOI: https://doi.org/10.15330/cmp.13.1.58-67

Published
2022-12-26
Section
Articles