Some sets of $\chi^{2}-$ summable sequences of Fuzzy numbers defined by a modulus
Resumen
In this paper we introduce the $\chi^{2}$ fuzzy numbers defined by a modulus, study some of their properties and inclusion results.
Descargas
Citas
T.Apostol, Mathematical Analysis, Addison-wesley , London, 1978.
M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
C.Bektas and Y.Altin, The sequence space lM (p, q, s) on seminormed spaces, Indian J. Pure Appl. Math., 34(4) (2003), 529-534.
T.J.I’A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. ,New York, (1965).
G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
F.Moricz, Extentions of the spaces c and c0 from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129-136.
F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
M.Mursaleen,M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math. , Vol. XXXII (1999), 145-150.
H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
W. Orlicz, Uber Raume ..LM Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
S. D.Parashar and B.Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. , 25(4)(1994), 419-428.
K. Chandrasekhara Rao and N.Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
B .C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
B. C.Tripathy,M.Et and Y.Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 1(3)(2003), 175-192.
A. Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
P. K. Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.
A. Gokhan and R.olak, The double sequence spaces cP2(p) and cPB 2 (p), Appl. Math. Comput., 157(2), (2004), 491-501.
A. Gokhan and R.olak, Double sequence spaces l12 , ibid., 160(1), (2005), 147-153.
M. Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
M. Mursaleen and O. H. H. Edely,Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
B .Altay and Feyzi Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
Feyzi Basar and Y. Sever, The space Lp of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
N. Subramanian and U. K. Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
H. Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.
B. Kuttner, Note on strong summability, J. London Math. Soc., 21(1946), 118-122.
I. J. Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc., 85(2), (1979), 345-350.
J. Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.
A. Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.
H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.
H. J. Hamilton, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343-358.
H. J. Hamilton, Change of Dimension in sequence transformation , Duke Math. J., 4, (1938), 341-342.
H. J. Hamilton, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293-297.
G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50-73.
L. L. Silverman, On the definition of the sum of a divergent series, un published thesis, University of Missouri studies, Mathematics series.
O.Toeplitz, Uber allgenmeine linear mittel bridungen, Prace Matemalyczno Fizyczne (warsaw), 22, (1911).
Feyzi Basar and B.Atlay, On the space of sequences of p- bounded variation and related matrix mappings, Ukrainian Math. J., 55(1), (2003), 136-147.
B. Altay and Feyzi Basar, The fine spectrum and the matrix domain of the difference operator on the sequence space lp, (0 < p < 1), Commun. Math. Anal., 2(2), (2007), 1-11.
R. olak,M.Et and E.Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Firat Univ. Elazig, Turkey, 2004, pp. 1-63, Firat Univ. Press, (2004), ISBN: 975-394- 0386-6.
B.C. Tripathy and B.Sarma, Some double sequence spaces of fuzzy numbes defined by Orlicz function, Acta Mthematica Scientia, (31 B(1)), (2011), 1-7.
L .A .Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126.
F. Nuray and E. Savas, Statistical convergence of fuzzy numbers,Math Slovaca 45(3), (1995), 269-273.
F.Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99 (1998), 353-356.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).