An ideal-based cozero-divisor graph of a commutative ring
Resumen
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this article, we introduce the cozero-divisor graph $\acute{\Gamma}_I(R)$ of $R$ and explore some of its basic properties. This graph can be regarded as a dual notion of an ideal-based zero-divisor graph.
Descargas
Citas
M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35, 753-762, (2011).
M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35, 935-944, (2012).
M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings, Appl. Math. 4, 979-985, (2013). https://doi.org/10.4236/am.2013.47135
D. F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, On the diameter of the graph ΓAnn(M) (R), Filomat 26 (3), 623-629, (2012). https://doi.org/10.2298/FIL1203623A
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447, (1999). https://doi.org/10.1006/jabr.1998.7840
D .F. Anderson and S. Shirinkam, Some remarks on the graph ΓI (R), Comm. Algebra 42, 545-562, (2014). https://doi.org/10.1080/00927872.2012.718021
H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4), 1189-1201, (2007). https://doi.org/10.11650/twjm/1500404812
H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra 39, 2396-2416, (2011). https://doi.org/10.1080/00927872.2010.488684
J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976. https://doi.org/10.1007/978-1-349-03521-2
S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc. 46, 313-325, (2009). https://doi.org/10.4134/JKMS.2009.46.2.313
P. Dheena and B. Elavarasan, An ideal-based zero-divisor graph of 2-primal near-rings, Bull. Korean Math. Soc. 46, 1051-1060, (2009). https://doi.org/10.4134/BKMS.2009.46.6.1051
L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1, 1-6, (1950). https://doi.org/10.1090/S0002-9939-1950-0032584-8
I. Kaplansky, Commutative rings, University of Chicago, (1978).
M. J. Nikmehr and S. Khojasteh, A generalized ideal-based zero-divisor graph, J. Algebra Appl. 14 (6), 1550079, (2015). https://doi.org/10.1142/S0219498815500796
H. R. Maimani, M. R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (3), 923-929, (2006). https://doi.org/10.1080/00927870500441858
S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31, 4425-4443, (2003). https://doi.org/10.1081/AGB-120022801
A. Yousefian Darani, Notes on the ideal-based zero-divisor graph, J. Math. Appl. 32, 103-107, (2010).
Derechos de autor 2021 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).