Some topological properties and asymptotic behavior of the higher eigencurves for the $p$-laplacian operator with weight

  • Moussaoui Mimoun LANOL Laboratory
  • Ahmed Dakkak Sidi Mohamed ben Abdellah University
  • Omar Chakrone LANOL Laboratory

Resumen

In this papers we prove the existence of the higher eigencurves for the $p$-laplacian operator with weight, we gives its variational formulation, we study its monotonicity, continuity properties and its asymptotic behavior.

Descargas

La descarga de datos todavía no está disponible.

Citas

P. A. Binding, Y. X. Huang. The principal eigencurve of the p-Laplacian. Differntial and Integral Equations 1995; 405-414.

P. A. Binding, Y. X. Huang. Bifurcation from eigencurves of the p-laplacian. Differntial and Integral Equations 1995; 8: 415-428.

M. Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. EJDE 2001; 33: 1-9.

A. Dakkak. M. Hadda, Eigencurves of the p-Laplacian weights and their asymptotic behavior, EJDE 2017; 35: 1-7.

A. Dakkak, M. Moussaoui. On the second eigencurve for the p-Laplacian operator with weight. BSPM 2017; 35: 281-289. https://doi.org/10.5269/bspm.v35i1.28913

D. G. De Figueiredo. Positive solution of semi-linear elliptic equation. Lecture Notes in Mathematics 1982; 957: 34-87. https://doi.org/10.1007/BFb0066233

D. G. De Figueiredo, J. P. Gossez. Strict monotonicity of eigenvalues and unique continuation. Comm Par Diff Equat 1992; 17: 339-346. https://doi.org/10.1080/03605309208820844

M. Ruzicka. Electrorheological Fluids: Modeling and Mathematical Theory, Springer-verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029

A. Szulkin. Ljusternik-Schnirelmann theory on C1 -manifolds. Ann I H Poincare Anal non lineaire 1988; 5: 119-139. https://doi.org/10.1016/s0294-1449(16)30348-1

Publicado
2022-01-31
Sección
Articles