Some topological properties and asymptotic behavior of the higher eigencurves for the $p$-laplacian operator with weight
Resumen
In this papers we prove the existence of the higher eigencurves for the $p$-laplacian operator with weight, we gives its variational formulation, we study its monotonicity, continuity properties and its asymptotic behavior.
Descargas
Citas
P. A. Binding, Y. X. Huang. The principal eigencurve of the p-Laplacian. Differntial and Integral Equations 1995; 405-414.
P. A. Binding, Y. X. Huang. Bifurcation from eigencurves of the p-laplacian. Differntial and Integral Equations 1995; 8: 415-428.
M. Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. EJDE 2001; 33: 1-9.
A. Dakkak. M. Hadda, Eigencurves of the p-Laplacian weights and their asymptotic behavior, EJDE 2017; 35: 1-7.
A. Dakkak, M. Moussaoui. On the second eigencurve for the p-Laplacian operator with weight. BSPM 2017; 35: 281-289. https://doi.org/10.5269/bspm.v35i1.28913
D. G. De Figueiredo. Positive solution of semi-linear elliptic equation. Lecture Notes in Mathematics 1982; 957: 34-87. https://doi.org/10.1007/BFb0066233
D. G. De Figueiredo, J. P. Gossez. Strict monotonicity of eigenvalues and unique continuation. Comm Par Diff Equat 1992; 17: 339-346. https://doi.org/10.1080/03605309208820844
M. Ruzicka. Electrorheological Fluids: Modeling and Mathematical Theory, Springer-verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029
A. Szulkin. Ljusternik-Schnirelmann theory on C1 -manifolds. Ann I H Poincare Anal non lineaire 1988; 5: 119-139. https://doi.org/10.1016/s0294-1449(16)30348-1
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).