On the existence solutions for some Nonlinear elliptic problem

  • Abdelmoujib Benkirane University Sidi Mohamed Ben Abdellah
  • Badr El Haji University Sidi Mohamed Ben Abdellah
  • Mostafa El Moumni University Chouaib Doukkali

Resumen

In the present paper, we study the existence and regularity of positive solutions for the following boundary value problem : $\mathrm{-div}\> \big( \lvert\nabla u\rvert^{p-2}\nabla u ) + u^{s} = \dfrac{f}{u^{\alpha}}\mbox{ in } \Omega \mbox{ and } u=0\mbox{ on } \partial\Omega,$ where $ \Omega $ is an open and bounded subset of $ \mathbb{R}^{N} $ $ (N> p>1) $, $ 0<\alpha\leq 1 $, $ s\geq 1 $ and $f$ is a nonnegative function that belongs to some Lebesgue space.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Abdelmoujib Benkirane, University Sidi Mohamed Ben Abdellah

Laboratory LAMA, Department of Mathematics, Faculty of Sciences Fez

Mostafa El Moumni, University Chouaib Doukkali

Department of Mathematics, Faculty of Sciences El jadida

Citas

Akdim. Y, Benkirane. A and El Moumni. M, Solutions of nonlinear elliptic problems withlower order terms, Ann. Funct. Anal. 6, no. 1, 34-53 (2015). https://doi.org/10.15352/afa/06-1-4

Ambrosetti. A, Brezis. H and Cerami. G, Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519-543 (1994). https://doi.org/10.1006/jfan.1994.1078

Benkirane. A, El Haji. B and El Moumni. M, On the existence of solution for degenerate parabolic equations with singular terms. Pure and Applied Mathematics Quarterly Volume 14, Number 3-4, (2018), 591-606 https://doi.org/10.4310/PAMQ.2018.v14.n3.a8

Boccardo. L, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Ann Mat. Pura Appl. (4 ) 188, no. 4, pp. 591-601 (2009). https://doi.org/10.1007/s10231-008-0090-5

Boccardo. L and F. Murat. F, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Analysis 19 (1992) 581-597. https://doi.org/10.1016/0362-546X(92)90023-8

Boccardo. L, Gallouet. T, Vazquez. J. L, Nonlinear elliptic equations in RN without growth restrictions on the data, J. Differential Equations 105, no. 2, pp. 334-363 (1993). https://doi.org/10.1006/jdeq.1993.1092

Boccardo. L and Orsina. L, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37, pp. 363-380 (2009). https://doi.org/10.1007/s00526-009-0266-x

Callegari. A and Nashman. A, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38(2), 275-281 (1980). https://doi.org/10.1137/0138024

Canino. A, Sciunzi. B and Trombetta. A, Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl. 23, pp. 8-18 (2016). https://doi.org/10.1007/s00030-016-0361-6

Cirmi. R, Regularity of the solutions to nonlinear elliptic equations with a lower-order term, Nonlinear Anal. T.M.A. 25, pp. 569-580 (1995). https://doi.org/10.1016/0362-546X(94)00173-F

Chu. Y, Gao. R and Sun. y, Existence and regularity of solutions to a quasilinear elliptic problem involving variable sources, Boundary Value Problems 2017:155. https://doi.org/10.1186/s13661-017-0888-4

Dall'Aglio. A, Orsina. L and Petitta. F, Existence of solutions for degenerate parabolic equations with singular terms. Nonlinear Anal. 131, 273-288 (2016). https://doi.org/10.1016/j.na.2015.06.030

De Cave. L, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (3-4), pp. 181-195(2013). https://doi.org/10.3233/ASY-131173

De Cave. L and F. Oliva. F, On the regularizing effet of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, JEPE. Vol 2, p. 73-85 (2016). https://doi.org/10.1007/BF03377393

El Haji. B, El Moumni. M and Kouhaila. K, On a nonlinear elliptic problems having large monotonocity with L1 data in weighted Orlicz-Sobolev spaces. Moroccan J. of Pure and Appl. Anal. (MJPAA) Vol 5(1), (2019), 104-116. https://doi.org/10.2478/mjpaa-2019-0008

El Moumni. M, Nonlinear Elliptic Equations Without Sign Condition and L1 -Data in Musielak-Orlicz-Sobolev Spaces, Acta Applicandae Mathematicae https://doi.org/10.1007/s10440-018-0186-x

Keller. H. B and Cohen. D. S, Some positive problems suggested by nonlinear heat generators. J. Math. Mech. 16(12), 1361-1376 (1967). https://doi.org/10.1512/iumj.1967.16.16087

Leray. J and Lions. J- L, Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93, pp. 97-107 (1965). https://doi.org/10.24033/bsmf.1617

Maso. G. D, Murat. F, Orsina. L and Prignet. A , Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 28(4), 741-808 (1999).

Oliva. F and Petitta. F, Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness. J. Differential Equations 264, no. 1, 311-340 (2018). https://doi.org/10.1016/j.jde.2017.09.008

Oliva. F and Petitta. F, On singular elliptic equations with measure sources. ESAIM Control Optim. Calc. Var. 22, no. 1, 289-308 (2016). https://doi.org/10.1051/cocv/2015004

Stampacchia. G, Equations elliptiques du second ordre a coeficients discontinus, Les Presses de l'Universite de Montreal 1966.

Vazquez. J. L, A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Appl. Math. Optim., 12, pp. 191-202 (1984). https://doi.org/10.1007/BF01449041

Publicado
2022-02-07
Sección
Proceedings